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Abstract. Previously, we have identified a gene encoding thrombospondin-related anonymous
protein of Babesia gibsoni (BgTRAP), and have shown that the antisera raised against
recombinant BgTRAP expressed in Escherichia coli inhibited the growth of parasites. In the
present study, a recombinant vaccinia virus expressing the BgTRAP (VV/BgTRAP) was
constructed. A specific band with a molecular mass of 80 kDa, which is similar to that of
native BgTRAP on the merozoites of B. gibsoni, was detected in the supernatant of VV/
BgTRAP-infected RK13 cells. Mice inoculated with VV/BgTRAP produced a specific anti-
BgTRAP response. The antiserum against VV/BgTRAP showed reactivity against the native
BgTRAP on parasites. These results indicated that the recombinant vaccinia virus expressing
BgTRAP might be a vaccine candidate against canine B. gibsoni infection.

INTRODUCTION

Babesia gibsoni is a tick-borne apicom-
plexan parasite that causes piroplasmosis
in dogs. The disease is characterized by
remittent fever, progressive anemia,
hemoglobinuria, and marked splenomegaly
and hepatomegaly; in addition, it sometimes
causes death. B. gibsoni infection is endemic
in many regions of Asia, Africa, Europe, and
America (Casapulla et al., 1998; Zhou et al.,

2002). Recently, this disease has frequently
been observed in companion animals,
becoming a significant problem from a
clinical point of view (Farwell et al., 1982;
Adachi et al., 1993).

The development of a vaccine that would
reduce or prevent the clinical symptoms of
canine B. gibsoni infection is considered
to be the best approach for controlling the
disease. However, no vaccine is currently
available. Therefore, there is a need to
develop an effective vaccine to control B.

gibsoni infection in dogs.
Thrombospondin-related anonymous

proteins (TRAPs) are a conserved family
identified in several apicomplexans,
including Plasmodium spp., Toxoplasma

gondii, Cryptosporidium parvum, Eimeria

tenella, Neospora caninum, and B. bovis

(Tomley et al., 1991; Trottein et al., 1995;
Robson et al., 1997; Templeton et al., 1997;
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Wan et al., 1997; Spano et al., 1998; Lovett
et al., 2000; Gaffar et al., 2004). Previously,
we identified and characterized a B.

gibsoni TRAP (BgTRAP) (Zhou et al., 2006).
The amino acid sequence of BgTRAP
consists of several typical regions, including
a signal peptide, a vonWillebrand factor a
domain, a thrombospondin type 1 domain, a
transmembrane region, and a cytoplasmic
C-terminus. The BgTRAP showed bivalent
cation-independent binding to canine RBC,
and the specific antiserum was found to
inhibit the growth of B. gibsoni in infected
severe combined immune deficiency (SCID)
mice given canine RBC. These results suggest
that the BgTRAP plays a critical role in the
erythrocyte invasion by B. gibsoni and that
it might be a logical candidate for a vaccine
antigen as well as a serodiagnostic reagent
(Zhou et al., 2006).

A live antigen delivery system has many
advantages for the large-scale development
of vaccines. It is easy to produce, resistant
to environmental extremes, and less
expensive than other systems. In addition,
the recombinant live vaccine elicits strong
host immunity against itself as well as
other heterologous antigens. Recombinant
vaccinia viruses have been demonstrated
to be effective antigen delivery systems
for infectious diseases (Panicali et al., 1983;
Smith et al., 1983; Moss et al., 1984;
Tsukiyama et al., 1989; Ertl & Xiang, 1996).
In this study, we constructed a recombinant
vaccinia virus expressing BgTRAP and
evaluated its immunogenicity against B.

gibsoni in mice.

MATERIALS AND METHODS

Cells and viruses

The vaccinia virus LC16mO (mO) strain
and its recombinants were propagated in
rabbit kidney (RK13) cells in Eagle’s
minimum essential medium (Sigma, USA)
supplemented with 8% fetal bovine serum
(FBS).

Construction of a recombinant vaccinia

virus expressing the BgTRAP or green

fluorescent protein (GFP)

The recombinant vaccinia virus expressing
BgTRAP (VV/BgTRAP) or GFP (VV/GFP) was
constructed as follows. The fragment
containing the open reading frame of the
BgTRAP gene was amplified from cDNAs
of B. gibsoni by polymerase chain reaction
(PCR) using a set of primers, 5’-ACGAA
TTCAAGCATGGCGAGGATGAAG-3’ and 5’-
ACGAATTCTCAGGCCCACATGGCTTCA-3’
(Zhou et al., 2006). The PCR product was
cloned into the EcoRI site of the cloning
vector, pBluescriptSK (pBS) (Stratagene,
USA). The plasmid pBS/BgTRAP was then
cut with EcoRI, and the fragment (2,227 bp)
containing BgTRAP was blunted using
Klenow Fragment (Takara, Japan) and
cloned into the Sal site of the vaccinia
virus transfer vector, pAK8 (Yasuda et al.,

1990). Plasmid pCX-EGFP was cut with
EcoRI, and the fragment (732 bp) containing
EGFP was blunted using the Klenow
Fragment and cloned into the SalI site of
pAK8. RK13 cells infected with the vaccinia
virus (mO) were transfected with the recom-
binant transfer vectors. Thymidine kinase-
negative (TK-) viruses were isolated by a
plaque assay on 143TK- cells in the presence
of 5-bromo-2’-deoxyuridine at a concen-
tration of 100 µg/ml (Yasuda et al., 1990).

Indirect fluorescent antibody test

(IFAT)

RK13 cells infected with VV/BgTRAP or
VV/GFP were placed on slides, air-dried, and
then fixed with acetone for 20 min. The diluted
(appropriate dilutions were made in 10%
FBS in PBS (FBS-PBS)) anti-BgTRAP-
specific rabbit serum (Zhou et al., 2006) was
applied as the first antibody on fixed smears
and incubated for 1 hr at 37°C. After three
washings with PBS, Alexa-Fluor® 488-
conjugated goat anti-rabbit immunoglobin
G (IgG) (Molecular Probes, USA) was
subsequently applied (1:200 dilution in
FCS-PBS) as a secondary antibody and
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incubated for another 1 hr at 37°C. After
three washings with PBS, the glass slides
were covered with a glass cover slip. The
slides were examined under a fluorescent
microscope.

The IFAT for determining the BgTRAP
on B. gibsoni merozoites using the anti-
VV/BgTRAP antibody was carried out as
described previously (Zhou et al., 2006), and
the cells were observed under a confocal
laser scanning microscope (TCS NT, Leica,
Germany).

SDS-polyacrylamide gel electrophoresis

(SDS-PAGE) and Western blot analysis

RK13 cells infected with VV/BgTRAP or
VV/GFP were cultured on 6-well plates with
a 0.5 ml medium. At the end of the culture,
the culture medium was harvested by
centrifugation, and the cells were harvested
in 1 ml PBS. The cells were then washed three
times and sonicated. The cells or culture
supernatants were mixed with an equal
volume of a 2×SDS gel-loading buffer under
reducing conditions. The samples were boiled
for 5 min, and each 10 µl of sample was then
subjected to SDS-PAGE. After SDS-PAGE,
the protein bands in the gel were electrically
transferred to a membrane (Immobilon
transfer membrane, Millipore, USA). The
membrane was blocked with PBS containing
3% skim milk and then incubated with anti-
BgTRAP rabbit serum diluted 1:200 with
PBS containing 3% skim milk at 37°C for 1 hr.
The membrane was washed three times and
incubated with HRPO-conjugated goat
anti-rabbit IgG diluted 1:2,000 with PBS
containing 3% skim milk at 37°C for 1 hr.
After washing three times, the bands
recognized by a specific antibody were
visualized by incubation with 0.5 mg/ml 3’,
3-diaminobenzine in PBS containing 0.03%
H2O2.

Vaccination

Female BALB/c mice (6 weeks old) were
purchased from a commercial supplier
(Clea, Japan). One group of mice was
inoculated intraperitoneally (i.p.) with VV/
BgTRAP. Another group of mice inoculated
i.p. with VV/GFP was used as a viral control.

The doses of vaccinia viruses were 1×106

plaque-forming units (pfu) per mouse. Mice
were boosted with the same inoculum 14
days after the first inoculation. Serum was
collected at 1-week intervals from each
mouse.

Measurement of B. gibsoni-specific

antibodies

The BgTRAP-specific immunoglobulin
level in mouse serum was measured by
the enzyme-linked immunosorbent assay
(ELISA). Purified GST-BgTRAP or control
GST (Zhou et al., 2006) was diluted in a 50
mM carbonate-bicarbonate buffer (pH 9.6)
to 2 µg/ml, and 50 µl aliquots of the diluted
antigen were added to each well of a 96-well
ELISA plate (Nunc, Denmark). The plate was
incubated at 4°C overnight and washed once
with PBS containing 0.05% Tween 20 (PBS-
T). The residual binding sites were then
blocked with PBS containing 3% skim milk
for 1 hr at 37°C. Each well was washed once
with PBS-T, and 100 µl of serum samples
diluted to 1:100 with PBS containing 3%
skim milk was added to duplicate wells for
each sample. The plate was incubated at
37°C for 1 hr. After washing 6 times with
PBS-T, the plate was incubated with HRPO-
conjugated goat anti-mouse IgG antibody at
37°C for 1 hr. After washing 6 times with
PBS-T, 100 µl of substrate was added to each
well and incubated at room temperature for
1 hr. The absorbance at 415 nm was measured
by using an ELISA plate reader (Corona,
Japan) and is shown as the distance between
the GST-BgTRAP and control GST.

RESULTS

In order to develop an effective recombinant
vaccine against B. gibsoni infection in dogs,
a recombinant vaccinia virus expressing
BgTRAP was constructed. The BgTRAP gene
was inserted into the TK gene of the vaccinia
virus mO strain under the control of the early-
late promoter for the vaccinia virus 7.5 kDa
polypeptide. To determine whether the
BgTRAP was expressed in RK13 cells by the
recombinant vaccinia virus, the VV/BgTRAP-
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infected cells were examined by IFAT using
anti-BgTRAP mouse sera. As shown in Fig. 1,
specific fluorescence was observed in VV/
BgTRAP-infected cells but not in VV/WT-
infected cells.

To determine the molecular mass of
the BgTRAP expressed by recombinant
VV/BgTRAP, Western blot analysis was
performed. A specific band with a molecular
mass of 80 kDa, which was similar to that
of native BgTRAP on the merozoites of B.

gibsoni, was detected in the supernatants
of VV/BgTRAP-infected RK13 cells (Fig. 2).

Figure 3 shows that a specific antibody
response was obtained in mice inoculated
with recombinant VV/BgTRAP but not in
mice inoculated with the control virus VV/
GFP. The antibody response against BgTRAP
was gradually increased after boosting the
inoculation with recombinant VV/BgTRAP.
The BgTRAP-specific antibody induced in
mice reacted strongly with intact B. gibsoni

merozoites, as judged by IFAT (Fig. 4).
Specific fluorescence seemed to distribute
on the micronemal protein of the parasites.

DISCUSSION

Vaccinia viruses have been widely used as
live vectors to express foreign genes, mainly
from other infectious viruses. In general, the
immunization of laboratory animals or natural
host animals with these recombinant vaccinia
viruses could induce neutralizing antibodies
and protect the animals from challenge
infections with corresponding infectious
viruses. Recently, vaccinia virus vector has
been also used as live vector to express
foreign genes from protozoan parasites, and
demonstrated that the animals inoculated
recombinant vaccinia vaccines could induce
protective immunity against virulent parasite
infections (Honda et al., 1998; Miyahara et

al., 1998; Nishikawa et al., 2001).
TRAP from Plasmodium is the essential

adhesion needed for sporozoite motility
and liver cell invasion (Naitza et al., 1998).
Moreover, recent findings, including the
identification of the Plasmodium merozoite
TRAP-homologue, have shown a conserved
molecular motor of cell invasion and gliding

Figure 1. IFAT of recombinant BgTRAP expressed in RK13 cells by a vaccinia virus. (A) VV/BgTRAP-
infected or (B) VV/wt-infect RK13 cells (48 h post infection) were reacted with anti-BgTRAP-specific
rabbit serum followed by Alexa Flour-488-conjugated secondary antibodies. Alexa Flour-488-stained
proteins are visualized in green.
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Figure 2. Western blot analysis of a recombinant vaccinia virus using anti-BgTRAP rabbit serum. Cell
lysates of RK13 cells infected with VV/BgTRAP (lane 2), culture supernatants of RK13 cells infected
with VV/BgTRAP (lane 3), cell lysates of RK13 cells infected with VV/GFP (lane 4), and culture
supernatants of RK13 cells infected with VV/GFP (lane 5) were separated by SDS-polyacrylamide gel
electrophoresis following Western blotting analysis using anti-BgTRAP rabbit serum as the primary
antibody. A specific band with a molecular mass of 80 kDa, which was similar to that of native BgTRAP
on merozoites of B. gibsoni, was detected in the supernatants of VV/BgTRAP-infected RK13 cells. Lane
1 shows molecular mass markers.

Figure 3. B. gibsoni-specific antibody responses of mice vaccinated with recombinant vaccinia viruses
and control mice inoculated with VV/GFP. Mice were inoculated with 1×106 pfu of vaccinia viruses on
days 0 and 13. Serum samples were collected at 1-week intervals from each mouse, and B. gibsoni-
specific antibody responses were measured by ELISA. Antibody titers were expressed as the absorbance
at 415 nm. *, The level of antibody of mice vaccinated with VV/BgTRAP was significantly higher than
that of control mice (P<0.05). , VV/BgTRAP-infected; , VV/GFP-infected; , MEM-inoculated.
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Figure 4. Observation of parasite antigen recognized by a mouse anti-VV/BgTRAP serum in
confocal laser micrographs. A, Immunofluorescent staining of B. gibsoni merozoites with
mouse anti-VV/BgTRAP serum. B, Propidium iodide staining of B. gibsoni merozoite nuclei. C,
The phase-contrast images of B. gibsoni merozotites. D, Panels A and B overlaid on panel C.
The images were derived from a single section.

motility across malaria life cycle stages and
other apicomplexan parasites (Baum et al.,

2006). Previously, we identified the TRAP-
homologue from B. gibsoni and provided
direct evidence of this protein binding to
erythrocytes (Zhou et al., 2006). The
antiserum against recombinant BgTRAP
recognized an 80 kDa protein in the lysate
of infected erythrocytes (RBCs), which
was detectable in the micronemal area of
the parasite by confocal microscopic
observation. The BgTRAP showed a bivalent
cation-independent binding to canine RBC,
and the specific antiserum was found to
inhibit the growth of B. gibsoni in the
infected severe combined immune

deficiency mice given canine RBC (Zhou
et al., 2006).

In this study, we constructed a
recombinant vaccinia virus expressing
BgTRAP. A specific band of 80 kDa, which
was similar to that of native BgTRAP
expressed in B. gibsoni, was detected in
the supernatants of VV/BgTRAP-infected
RK13 cells. The extra bands from the cell
lysate of RK13 cells infected with VV/
BgTRAP suggest that it undergoes limited
processing and that only mature BgTRAP was
secreted into the supernatant. The antibody
response against the BgTRAP was gradually
increased after boosting the immunization
with VV/BgTRAP. The antiserum against the
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recombinant BgTRAP was detectable in the
micronemal area of the parasite by confocal
microscopic observation. The mechanisms
of immunity to babesial parasites are
hypothesized to require both innate and
adaptive responses that include both CD4+ T
cells and a neutralizing antibody. Because
Babesia parasites only infect erythrocytes,
the adaptive immune response to subsequent
infection and protection against clinical
disease is dependent on the presentation of
parasite antigens by antigen-presenting
cells to CD4+ T lymphocytes (Brown &
Palmer, 1999; Hemmer et al., 2000; Brown,

2001). The control of Babesia infection is
likely to be mediated by the destruction of
infected erythrocytes by activated splenic
macrophages (Brown & Palmer, 1999; Brown,

2001) and by neutralizing antibodies directed
against extracellular merozoites. Therefore,
it is important to lead specific antibodies to
Babesia parasites for the development of
a B. gibsoni vaccine. Whether the antibody
induced in mice by VV/BgTRAP can inhibit
the B. gibsoni was still not confirmed in the
present study due to the fact that wild type
mice are not susceptible for B. gibsoni

infection. However, our previous study has
evidenced that the antibody produced in
rabbit by E. coli-expressed BgTRAP can
confer the protective passive immunity
against B. gibsoni infection in SCID mice
given canine RBC (Zhou et al., 2006).
Therefore, the antibody produced in mice
by VV/BgTRAP is speculated to having
inhibitory ability against B. gibsoni

parasites. Further study is needed to
confirm our speculation by using dogs, the
only natural host of B. gibsoni.

In conclusion, a recombinant vaccinia
virus expressing BgTRAP was constructed,
and its antigenicity in a laboratory animal
was evaluated. These results indicated that
the recombinant vaccinia virus expressing
BgTRAP might be a vaccine candidate
against canine B. gibsoni infection. Our
next step will be immunization trails with
dogs to evaluate the potency of VV/BgTRAP
as a live vaccine to control the canine
babesiosis caused by B. gibsoni.
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