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Abstract. Peripheral blood smear microscopy still remains the gold standard for diagnosing
malaria and trypanosomiasis. Microscopy is a labor-intensive process and requires great
amount of skill to accomplish. Even though cheap and easy to perform, it still has several
limitations. This hinders the microscopist in identifying protozoan structure or differentiating
species from one another. Considering these factors in the performance of microscopic
examination, it is crucial to identify new strategies for parasite identification and species
differentiation. Innovations in clinical enzymology, immunodiagnostics, and molecular
technology would be of help in resolving the problem. This study mainly focused on the
possible role of clinical enzymes in malaria and trypanosomiasis diagnosis. Enzymes play a
vital role in parasite physiology and metabolism. They enable the parasite to survive inside
the living host by initiating different metabolic cycles. These enzymes can either be expressed
on the surface of the protozoa or excreted in the extracellular environment. Lactate
dehydrogenase, aldolase, and glutamate dehydrogenase were the significant enzymes
associated with pathogenic Plasmodium spp. Other malarial enzymes were also identified
but further validation is still required to establish their use as diagnostic biomarkers. Whereas,
the enzyme matrix metalloproteinase was identified as significant for diagnosing and
differentiating Trypanosoma spp. Analysis of these enzymes can be used as alternative
means for microscopy in parasite identification and differentiation. Application of these
enzymes as immunologic markers in various diagnostic test kits should be further evaluated.

INTRODUCTION

Microscopic evaluation of peripheral blood
smear is considered as the cornerstone of
diagnostic testing for blood and tissue
protozoan infections, namely Plasmodium

and Trypanosoma. Although effective, it
has low sensitivity due to the difficulty in
identifying different morphological stages
of the parasite. Factors such as parasite size
and density, specimen consistency and
volume, collection and transport of specimen
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should be taken into consideration to enhance
the diagnostic performance of microscopy.
Moreover, microscopy is a labor-intensive
process and requires great amount of
expertise. Currently, we have a shortage of
skilled laboratory scientist capable of
identifying the eggs and adult forms of the
parasite in wet and dry smears of clinical
specimens (Bergquist et al., 2009; Boatin
et al., 2012; L’Ollivier and Piarroux, 2013;
Tangpukdee et al., 2009). Considering these
factors, it is vital to identify new strategies
to improve parasite identification and
species differentiation such as the use of
clinical enzymology, immunodiagnostics,
and molecular technology. In this review
article, we focused on the use of enzymes as
possible immunological biomarkers in the
detection and differentiation of Plasmodium

and Trypanosoma species. The study aimed
to identify alternative techniques to routine
blood film microscopy that is cost effective,
more sensitive, readily available, and easily
performed.

ARTICLE SELECTION AND SEARCH
CRITERIA

References for this review were based on
searches in PubMed, ScienceDirect and
Google Scholar. Search strategy included
combinations of the following key words:
“enzymes”, “enzymology”, “malaria”,
“Plasmodium”, “Trypanosoma”, and
“trypanosomiasis”. All resulting articles
were initially screened by checking the
abstract. Studies included are those that
focused on the use of enzymes as biomarkers
in the diagnosis of either malaria or
trypanosomiasis. Articles that passed the
inclusion criteria were further screened by
checking the references for relevant
citations. Overall, a total of 13, 995 (published
between 1988 and 2017) studies were
screened by the researchers. Out of the total
number of studies screened, only 34 were
considered relevant for this review article.

EPIDEMIOLOGY OF MALARIA

Malaria infection is considered a threat to
public health in approximately 91 countries.
It is caused by five species of Plasmodium

parasites, namely: P. falciparum, P. vivax,
P. malariae, P. ovale, and P. knowlesi. The
parasite is usually transmitted through the
bite of a female Anopheles mosquito. Higher
rates of transmission are usually observed in
countries with warm climates such as those
near the equator. In these countries, the
disease is transmitted all-year-round. In
countries with cooler climates, the disease
transmission is less intense and more
seasonal. The highest rates of malaria
transmission are seen in South Africa and
Papua New Guinea. According to the World
Health Organization (WHO) World Malaria
Report in 2016, there were a total of 212
million individuals affected by malaria and
429, 000 have died due to the disease. In
2017, wherein children aged 5 and below
were susceptible to the infection, more than
70% of all deaths due to malaria occur in this
age group. Aside from the African region,
Southeast Asia, Latin America, and the
Middle-East are also at risk (“CDC,” 2017,
“WHO,” 2017).

All species of Plasmodium are found to
cause severe infections; however, infections
caused by P. falciparum are classified to be
the deadliest and exhibit the most cases of
drug resistance. Among the human parasite
species, P. vivax is the most prevalent
species in temperate climates and the
causative agent of relapsing benign tertian
malaria (Gething et al., 2012; Gething et al.,
2011). In sub-Saharan Africa, P. falciparum

is the most prevalent while P. ovale primary
infects the western areas of sub-Saharan
Africa. Although P. knowlesi normally
infects Southeast Asian macaques, human
infections also have been on the rise. In fact,
it is responsible for approximately 50% of
malaria cases in Malaysia. P. knowlesi

infection is difficult to diagnose since
different stages of P. knowlesi closely
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resemble P. malariae. But, unlike the usually
benign infections with P. malariae, P.

knowlesi infections can be rapidly fatal
(Gething et al., 2012; Gething et al., 2011;
Mendis et al., 2001).

DIAGNOSIS OF MALARIA

Improper diagnosis and rapidly evolving drug
resistant malarial parasites are seen as
reasons for the persisting high mortality
of malaria in endemic places. WHO
recommends that proper diagnosis must
be given to all malaria suspected patients
before drug administration. This prompted
the need to develop fast, economical, and
accurate techniques for malaria diagnosis
(Jain et al., 2014). Currently, the gold
standard for malarial diagnosis is through
the examination of a Giemsa-stained thick
and thin blood film (Mirdha et al., 1997;
Wilson, 2013). However, this method is
labor-intensive, time consuming, and
requires considerable skill in microscopy.
The main disadvantage of microscopic
technique would be its low sensitivity,
particularly in cases of low parasite density
(Erdman and Kain, 2008; Kyabayinze et al.,
2010; Payne, 1988). Even though microscopy
is less costly and requires inexpensive
reagents and equipment, it is important to
identify or evaluate new strategies to improve
the diagnosis of malaria.

The quantitative buffy coat (QBC)
technique was designed to improve micro-
scopic detection of malarial parasites. This
new method involves staining of parasite
deoxyribonucleic acid with fluorescent dyes
(e.g. acridine orange) (Adeoye and Nga, 2007;
Chotivanich et al., 2007; Clendennen et al.,
1995). The newly developed technique has
shown to be more rapid and more sensitive
compared to the traditional thick and thin
blood film in low parasitaemia, but requires
a fluorescent microscope (Ifeorah et al.,
2017; Ochola et al., 2006; Salmani et al., 2011;
Wongsrichanalai et al., 1992). Therefore, this
is not suitable for rural settings with limited
resources.

Rapid diagnostic tests (RDT) were
recognized by the WHO as simple, quick, and
accurate means of diagnosing malaria.
Testing using RDTs is inexpensive and is
readily available and easy to perform. These
tests are able to overcome the deficiencies
and shortcomings of the traditional stained
blood film examination. Most of RDTs
available detect the antigenic enzymes
produced by P. falciparum. The use of RDTs
has been recognized globally and currently
used for malarial diagnosis especially in
endemic countries (Amexo et al., 2004;
Chilton et al., 2006; Desai et al., 2007;
Doderer et al., 2007; Endeshaw et al., 2008;
Kim et al., 2008; Kyabayinze et al., 2008; Lee
et al., 2011; Park et al., 2006; Ratsimbasoa et

al., 2008; Wongsrichanalai et al., 2007).
Microscopy, together with RDT, is the

recommended method to confirm malarial
cases prior to anti-malarial drug admini-
stration (Jimenez et al., 2017). Nowadays
available RDTs use plasmodial enzymes as
the antigen for detection with the exception
of histidine-rich protein 2 (HRP2). It follows
the same principle, lateral flow immune-
chromatography, and comes in various
forms such as plastic cassette, dipstick, or
card. Antibodies conjugated to colloidal gold
particles bind specifically with parasite
antigens. While in diagnosing infections
caused by P. falciparum or by non-P.

falciparum malaria, antigens common to
all species like Plasmodium lactate
dehydrogenase (pLDH) or aldolase are
detected together with HRP2 in some RDTs
(Bell and Peeling, 2006). Other plasmodial
enzymes that are studied as potential
biomarkers are glutamate dehydrogenase
and glyceraldehyde-3-phosphate dehydro-
genase (Krause et al., 2017; Li et al., 2005).

MALARIAL ENZYMOLOGY

A. Lactate Dehydrogenase

pLDH is a key enzyme in the glycolytic
pathway of Plasmodium species and has
isomers specific to the species. This enzyme
is secreted in the host’s peripheral blood and
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is detectable within 24 hours of effective
malaria treatment (Harani et al., 2006; Oduola
et al., 1997). Due to these characteristics,
pLDH has become a known reliable marker
in detecting the presence of viable
Plasmodium in the blood and is also widely
used for screening in malaria-endemic
countries (Lee et al., 2012).  However, it must
be noted that pLDH is only detectable in the
presence of live parasites (Makler and
Hinrichs, 1993; Piper et al., 1999).

Because of the lack of a functional
Krebs cycle, Plasmodium parasites heavily
relies on LDH for survival during their
intraerythrocytic stages and therefore, the
only source of their adenosine triphosphate
is through glycolysis together with
fermentation. Consequently, an increase in
glucose consumption of 30- to 50-fold
higher than the host erythrocytes is
observed (Chaikuad et al., 2005; Makler and
Hinrichs, 1993). pLDH can be differentiated
from mammalian LDH in both structure and
kinetic features. In terms of structure, pLDH
has a five-residue insertion (DKEWN) in their
active site loop which activates during
catalysis and closes down the active site.
This insertion greatly enhances the
substrate-specificity of pLDH compared to
the human muscle and heart LDH isotopes.
When it comes to kinetic feature, all pLDH
differ from mammalian LDH by the
susceptibility of the later to be inhibited by
excess levels of the substrate pyruvate while
pLDH exhibits decreased marked substrate
inhibition. Also, pLDH has an ability to readily
use the synthetic coenzyme 3-acetylpyridine
adenine dinucleotide (APAD) as its cofactor
(Chaikuad et al., 2005; Makler and Hinrichs,
1993). A study conducted by Brown et al.

(2004) compared the structure of the pLDH
of the four human plasmodial species. They
have reported a 90-92% structure similarity
of the pLDH from P. vivax, P. malariae and
P. ovale to pLDH from P. falciparum.
However there are significant differences
between the Plasmodium species when it
comes to kinetic properties and sensitivity
to inhibitors.

pLDH has been first studied in the 1970s
as a biomarker for malaria and had been used
to differentiate malarial species. It had also

been assayed as a parasite purity indicator.
And since pLDH is an effective target for
antibody-based malaria diagnosis by
numerous researches, easy-to-operate RDTs
that follow the principle of lateral flow
immunochromatography had been deve-
loped. Although light microscopy is the
reference method for malaria diagnosis,
RDTs have become widely used today since
they do not require a microscope or trained
microscopist. Proper execution of the
procedure provided by the manufacturer is
the main requirement for these tests. Further,
a diagnosis can be given within a few minutes
at point of care (Shoemark et al., 2007).
Currently, the most commercially available
RDTs are detecting either plasmodial HRP2
(pHRP2) or pLDH (Piper et al., 2011). In a
study by Ugah et al. (2017), they evaluated
three malaria diagnostic methods namely
the light microscopy method, molecular
method and RDTs. They have reported
that microscopy is still a good method for
malarial diagnosis since it has a good
measure of agreement with the polymerase
chain reaction (PCR). They recommended
that RDTs with high specificity and sensitivity
must be used in combination with microscopy
to ensure accuracy of laboratory reports.
Another malarial diagnostic approach
being studied is the development of
antibodies recognizing each species of
human Plasmodium. Selection of species-
specific epitopes is possible since pLDH is
not fully conserved across Plasmodium

species. Different levels of sensitivity of
immunochromatographic rapid tests can
also result from diverse combinations of
monoclonal antibodies against pLDH. These
methods present a tractable way to enhance
immunochromatographic pLDH tests
(Jimenez et al., 2017; Piper et al., 2011).

B. Aldolase

Another major enzyme involved in the
glycolytic pathway of Plasmodium is
aldolase, a homotetrameric protein which
catalyses the cleavage of fructose-1,6-
bisphosphate into glyceraldehyde-3-
phosphate and dihydroxyacetone phosphate.
Each subunit of the enzyme has a molecular
weight of approximately 40 kDa. Aldolase
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can be found in the host’s blood when the
enzyme is released during infection or in the
parasite’s cytoplasm in its soluble and active
form (Döbeli et al., 1990; Knapp et al., 1990;
Srivastava et al., 1990). Plasmodium

aldolase can be distinguished from human
isoenzyme by its possession of some unique
nucleotide sequences (Tritten et al., 2009).
Both P. falciparum and P. vivax have only
one aldolase isoenzyme and a great
proportion of the amino acid sequences are
greatly conserved in all Plasmodium species
(Kim et al., 1998; Lee et al., 2006). In RDTs,
aldolase is usually used as a pan-malaria
antigen. Since Plasmodium aldolase is
highly conserved during evolution, it makes
the enzyme a target of choice when analysing
isolates (Tritten et al., 2009). However, in a
study by Bell et al. (2005), they have reported
that in comparison to HRP2 based RDTs,
aldolase and pLDH based RDTs are less
sensitive due to the transient presence of the
enzymes in the blood. A number of studies
have also showed poor sensitivity of aldolase
RDTs which called for further studies on the
genetic diversity of aldolase. In contrast, a
study by Lee et al. (2006) on the diversity in
P. falciparum and P. vivax aldolase showed
results that aldolase is not a cause of low RDT
sensitivity. However, when it comes to
detecting P. vivax infection, aldolase as a
target antigen showed a more reliable
diagnosis as reported by Dzakah et al. (2014)
who assessed the relative performance of
four RDTs that emphasized the detection of
P. vivax antigens. Consequently, researchers
have noted that a more sensitive assay for
diagnosis of P. vivax infection can be
developed combining aldolase and pLDH in
RDTs.

C. Glutamate Dehydrogenase

Glutamate Dehydrogenase (GDH) plays an
important role in the metabolism of carbon
and nitrogen. It catalyses the oxidative
deamination of L-glutamate to 2-oxoglutarate
and ammonia, a NADP-linked reaction. GDHs
are assumed to be NADP-dependent when
involved in glutamate catabolism while in
ammonia fixation, GDH uses NADPH. NADPH
production in the P. falciparum is mainly the

responsibility of NADP-dependent GDH.
NADPH serves as the electron source for
glutathione reductase and thioredoxin
reductase, the parasite’s antioxidative
enzymes. Consequently, because plasmodia
are sensitive to oxidative stress, anti-
malarial drug development studies show
GDH as a promising target. In addition to
this, the host erythrocytes do not contain
GDH making this plasmodial enzyme a
more desirable target for anti-malarial drug
therapy (Wagner et al., 1998; Werner, et al.,
2005).

In a purified NADP-specific GDH isolated
from P. falciparum infected human
erythrocytes (Krauth-Siegel et al., 1996), P.

falciparum GDH (PfGDH) was characterized
as a homohexamer with a subunit molecular
mass of 49,500 as estimated by SDS/PAGE. A
study by Wagner and colleagues in 1998 also
described the three-dimensional structure of
PfGDH using an X-ray crystallography to a
resolution of 2.7 Å. They have stated that the
hexameric proteins subunit interfaces are
the most prominent differences between
plasmodial GDH and human GDH. In addition
to this, a unique N-terminal extension can be
found in PfGDH which is not seen in other
GDH sequence studied (Wagner et al., 1998;
Werner et al., 2005).  PfGDH also differs from
mammalian GDH in a number of aspects
namely kinetics, cofactors specificity,
substrate, degree of affinity and immuno-
genicity (Rodríguez-Acosta et al., 1998).

As a favourable malarial biomarker,
GDH was also studied for its potential in
detecting P. falciparum infection. A
study was conducted by Li et al. (2005)
wherein they established a colloidal gold-
immunochromatography assay (GICA) in
combination with monoclonal antibodies
against PfGDH for diagnosis of P.

falciparum malaria. They had reported
that in comparison to routine microscopic
examination, GICA had a sensitivity of
86.66% and specificity of 96.43% for P.

falciparum detection. In another study
conducted by de Dominguez and Rodríguez-
Acosta (1996), they determined the
antigenicity of PfGDH by affinity chroma-
tography isolation and its usefulness as a



786

diagnostic biomarker using enzyme-linked
immunoassay (ELISA). Using ELISA, the
optical density was significantly higher
among malarial patients compared to
healthy individuals. Whereas, there was no
significant difference in the optical density
between the sera of acute malaria patients
and the sera of patients with relapse or re-
infection. This method was 100% sensitive
in diagnosing malaria, but it could not
differentiate acute infections from relapse or
re-infection. The same authors also conducted
another study in 1999, wherein, they used
immunoaffinity separation technique with
Western Blot analysis to characterize P.

falciparum antigens present in patient
plasma. They had demonstrated in the study
that the activity of PfGDH in the plasma
could be detected by a technique with no
interference from human GDH, making
PfGDH an excellent parasite biomarker
comparable to lactate dehydrogenase and
aldolase (Rodríguez-Acosta et al., 1999).

D. Other Malarial Enzymes

Enzymes included in this section are
potential biomarkers for malarial diagnostics
but with limited literatures available, such
as glyceraldehyde-3-phosphate dehydro-
genase (GADPH), thioredoxin peroxidase-1
(TPx-1), dihydrofolate reductase-thymidine
synthase (DHFR-TS), hypoxanthine
phosphoribosyltransferase (HPRT),
phosphoglycerate mutase (PGM), and
fructose biphoshate aldolase (FBPA). Further
validation is still required to establish the
diagnostic use of these enzymes.

GAPDH is another plasmodial glycolytic
enzyme that was recently studied as a
new malarial diagnostic biomarker. A
recombinant P. falciparum GAPDH
(rPfGAPDH) has been crystallized to
determine the three-dimensional structure of
the enzyme in a study by Satchell et al. (2005).
They have reported that the four subunits of
the tetrameric enzyme have one molecule of
the cofactor NAD+ bound to each. They have
also identified the insertion of a dipeptide
(-KG-) in the S loop as the major structural
feature that differentiates human GAPDH
from PfGAPDH (Satchell et al., 2005). It

has been shown in previous studies that the
amino acid sequences of glycolytic enzymes
are highly conserved among Plasmodium

species. In a study by Krause et al. (2017), it
was demonstrated that GAPDH can be used
in RDTs as a promising alternative to pLDH.
Their results had shown the presence of
GAPDH in all Plasmodia and that it is 80% to
95% conserved amongst the 5 human malaria
species. The study had also demonstrated the
species-specific characteristic of the enzyme
due to the slight variation of the amino acid
sequences. Two isotopes specific to
PfGAPDH and one common to all mammalian
malaria species had been identified by the
study. Further research is still being
conducted to support plasmodial GAPDH as
a new malarial biomarker.

TPx-1 belongs to the family of ubiquitous
enzymes called peroxiredoxin, with a
molecular weight of approximately 20-30
kDa. TPx-1 is a cytoplasmic enzyme that
reduces and detoxifies hydrogen peroxide.
Studies showed that P. falciparum TPx-1
(PfTPx-1) is highly expressed during the
asexual erythrocytic life cycle of the parasite.
This enzyme is one of the most expressed in
the cytoplasm of P. falciparum, accounting
for 0.25% to 0.5% of the total cellular protein.
Moreover, due to its abundance, consistent
expression, and its difference from the human
orthologue, this enzyme is a promising target
for malarial diagnosis (Gretes et al., 2012;
Sue et al., 2005). In a study by Hakimi et al.

(2015), they developed monoclonal anti-
bodies against PfTPx-1 and incorporated
them to different RDTs and tested their role
as potential biomarkers. Based on the results,
the RDTs were able to detect PfTPx-1 present
from in-vitro cell cultures. These findings
further suggest that PfTPx-1 is a promising
biomarker for P. falciparum diagnosis.

DHFR is an enzyme that functions in
the folate pathway of Plasmodium spp. by
catalysing the reduction of dihydrofolate to
tetrahydrofolate. This enzyme is unique
compared to higher eukaryote homologue
because it can form a bi-functional enzyme
with thymidine synthase (TS) among
protozoa. The DHFR-TS enzyme play an
important role in pyrimidine and DNA
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synthesis in all protozoa, and the production
of tetrahydrofolate in plasmodia is highly
dependent on the presence of this enzyme.
The plasmodial DHFR-TS differ from those
of other protozoa due to the existence of two
additional sequences in the DHFR domain.
Moreover, the sizes of these sequences have
a slight variation per Plasmodium spp.
making this enzyme a potential candidate for
species differentiation. Kattenberg et al.

(2012) studied the potential of this enzyme
as new diagnostic marker for malaria. Based
on the results of their study, using ELISA,
antibodies produced against DHFR-TS (D6
and D15) were able to detect P. falciparum

crude parasite antigen. These antibodies
are comparable to the specificity of
commercially available antibodies against
HRP2 in detecting P. falciparum. Aside from
P. falciparum, other antibodies produced
against DHFR-TS (D7, D15, D16, and D28)
were able to detect P. vivax antigens from
pooled patient samples using ELISA. This
suggests that DHFR-TR is a potential
biomarker for P. falciparum and P. vivax

differentiation (Kattenberg et al., 2017;
Mouatcho and Goldring, 2017).

Recent studies used proteomics in the
search for new and effective malarial
biomarkers. In a study conducted by
Theìzeìnas et al. in 2013, they examined the
potential of P. falciparum hypoxanthine
phosphoribosyltransferase (PfHRPT) and
other enzymes as a candidate biomarker
for acute P. falciparum infections using
proteomic analysis. Protozoan parasites
lack certain enzymes necessary for both
DNA and RNA production from small
molecules. Instead, they rely on the salvage
of hypoxanthine, guanine, and possibly
xanthine via phosphoribosyltransferases for
both survival and reproduction (Keough et al.,
2010). Based on proteomic analysis of blood
samples from patients with severe falciparum
malaria, mild falciparum malaria, and the
control group, hypoxanthine phosphori-
bosyltransferase, phosphoglycerate mutase
(PfPGM), and fructose biphoshate aldolase
(PfFBPA), were higher in severe malaria
cases compared to the other groups. Based
on correlational analysis, they found out that

PfFBPA is significantly correlated with
parasite density while PfHRPT showed a
good correlation with malarial anaemia
(Fischer et al., 2013; Mouatcho and Goldring,
2017).

EPIDEMIOLOGY OF TRYPANOSOMIASIS

Human African trypanosomiasis (HAT)
epidemics were significant public health
problems in the past, but recently, only 7,000
to 10,000 cases are being recorded annually.
Human trypanosomiasis is caused by the
parasite Trypanosoma brucei which is being
transmitted by the bite of a carrier tse-tse fly
(Genus Glossina). There are two subspecies
of T. brucei that are known to infect man,
namely: T. brucei gambiense and T. brucei

rhodesiense. The two subspecies are found
in different geographic locations. T. brucei

rhodesiense is mainly found in areas of
Eastern and Southeastern Africa hence the
term East African trypanosomiasis. T. brucei

gambiense on the other hand is pre-
dominantly seen in central Africa and in some
limited areas of western Africa hence the
term West African trypanosomiasis. Before,
approximately 60 million individuals were
at risk for trypanosomiasis with an estimated
300,000 new infections per year in Africa. But
from 1995 to 2014, the rates declined where
in 2014 only 3, 796 new cases were reported
(“CDC,” 2017, “WHO,” 2017). Aside from HAT,
another form of trypanosomiasis exists, and
is known as Chagas disease or American
trypanosomiasis. Chagas disease is a
potentially life-threatening condition caused
by the protozoa T. cruzi. Approximately 6
to 7 million people worldwide are infected
with this disease, mostly in Latin American
countries. The disease is transmitted by the
triatomine or kissing bug which is endemic
to these areas (“CDC,” 2017, “WHO,” 2017).

DIAGNOSIS OF TRYPANOSOMIASIS

The routine method for trypanosome
diagnosis and differentiation would be the
evaluation of a Giemsa-stained blood film.



788

Although affordable, blood film examination
is still not that reliable due to the difficulties
in distinguishing the morphological stages
of Trypanosoma. Other method that can be
used for blood examination would be through
microscopic examination of the micro-
hematocrit buffy coat. This method gives
more accurate results with a sensitivity of
68.65%. In this technique, the trypanosomes
are being concentrated in the white blood
cell zone between the plasma and
erythrocytes for easier recovery (Lutumba
et al., 2006; Miezan et al., 1994).

Serodiagnostic techniques can also be
used in trypanosomiasis diagnosis. ELISA
test kits are available in the market for
trypanosome antibody detection. This type
of method is 97.35% specific and 91.4%
sensitivity in trypanosomiasis diagnosis.
Even though specific and sensitive, ELISA
methods cannot differentiate between
subspecies of T. brucei complex and cannot
differentiate acute from past infections. Other
limitations of this technique include the need
of specialized equipment and trained staff to
perform the test (Elrayah et al., 2007; Hasker
et al., 2010; Lejon et al., 2006; Nantulya et

al., 1992; Nantulya, 1997). A cheap, quick,
and practical serologic test that has been
widely used in field diagnosis of HAT is the
card agglutination trypanosomiasis test
(CATT). This test has high specificity when
used on undiluted whole blood, however, the
positive predictive value of this test is limited
since the test is mainly used on mass
screening of populations in which prevalence
of HAT is less than 5% (Chappuis et al., 2004).

Molecular techniques, using PCR, can
also be used for trypanosome detection in
different body fluids. This type of method
gives the highest sensitivity and specificity.
Most methods used primers that target the
177 bp satellite DNA which permits the
detection of members of the Genus
Trypanosoma. However, this method cannot
discriminate the two pathogenic subspecies
of T. brucei complex. Other drawbacks of this
technique include the need for specialized
machines that would replicate and detect
the presence of the targeted gene and the
trained staff to execute the sophisticated
test (Deborggraeve et al., 2011; Kabiri et al.,

1999; Kanmogne et al., 1996; Penchenier et

al., 2000; Radwanska et al., 2002).

HUMAN AFRICAN TRYPANOSOMIASIS
ENZYMOLOGY

Various types of proteinases are implicated
in ECM degradation, but the major enzymes
considered are the matrix metalloproteinases
(MMPs). To reach the inner tissues in its host,
the parasite T. brucei secretes proteases
into the ECM, such as the 40kDa neutral
metalloproteinase that permits the parasite
to move and migrate by degrading collagen,
fibronectin, and laminin. The GP63 zinc
metalloproteinase, the most important MMPs
in the parasite, is a surface enzyme that was
first reported in Leishmania. This protein is
highly conserved among species in terms of
homology. This enzyme performs several
functions in different stages of the
trypanosome life cycle. MMPs are zinc-
dependent protein and peptide hydrolases.
They are widely involved in metabolism
regulation through both extensive protein
degradation and selective peptide-bond
hydrolysis. MMPs are regulated via
modulation of gene expression, compart-
mentalization, and inhibition by protein
inhibitors. Most MMPs are not constitutively
transcribed, but are expressed after external
induction by cytokines and growth factors.
In addition, some MMPs are stored in
inflammatory cell granules, which restrict
their compass of action (Grandgenett et al.,
2007; Löffek et al., 2011; Nagase et al., 2006;
Tallant et al., 2010).

The T. brucei genome encodes three
groups of zinc metalloproteinases, each of
which contains ~30% amino acid identity
with the major surface protease (MSP, also
called GP63) of Leishmania. One of these
proteases, TbMSP-B, is encoded by four
nearly identical, tandem genes transcribed
in both bloodstream and procyclic
trypanosomes. TbMSP-B is a surface-
localized zinc metalloproteinase that is
expressed predominantly in differentiating
bloodstream form to procyclic form cells
and in established procyclic form cells
(Grandgenett et al., 2007).
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AMERICAN TRYPANOSOMIASIS
ENZYMOLOGY

Aside from the possible role of MMPs in
HAT diagnosis, they can also be used in the
diagnosis of American trypanosomiasis or
Chagas Disease. Increased levels of various
MMPs such as collagenases, stromelysins,
and gelatinases have been associated with
inflammatory diseases of connective tissues.
Among these collagenases are the MMP-2
and MMP-9, which can be used in the staging
and progression of Chagas disease. The
former is expressed in all cells including
cardiomyocytes and is considered as the
most ubiquitous while the latter is expressed
in inflammatory cells. MMP-2 and MMP-9 are
regulated by tissue inhibitors of MMPs
(TIMPs). TIMPs act as key local regulators
of activities of MMPs. Aside from identifying
the progress of Chagas disease, the two
MMPs are upregulated in cardiac tissue
during acute phase of T. cruzi infection. The
upregulation increases the MMP-9 mRNA
level as well as the protein content and
enzymatic activity. For MMP-2, it degrades
specific sarcomeric proteins and its levels
can be detected using PCR. The importance
of the MMPs as biomarkers in other human
studies were already been observed in
hypertension, myocardial infarction, and
systolic heart failure (Bautista-López et al.,
2006; Roberto et al., 2017).

MMP-2 and MMP-9 are also produced
by a variety of cells, such as astrocytes,
microglia and neurons and they play an
important role in neuro-inflammation. As
demonstrated in Central Nervous System
(CNS) disorders, these two MMPs are
involved in Blood-Brain Barrier (BBB)
permeability by attacking the extracellular
matrix. Human African trypanosomiasis
presents different stages and the second
stage of the disease indicates elevated levels
of MMP-2 and MMP-9 that is also due to the
correlation of the number of white blood cells
in the cerebrospinal fluid confirming the role
in BBB dysfunction (Ngoyi et al., 2011).

CONCLUSION

Based on the review of selected literatures,
certain enzymes play a crucial role in blood
protozoan physiology and metabolism. Aside
from aiding in normal protozoan function and
life cycle, these enzymes can also be used as
biomarkers for diagnosis. Malarial enzymes
emphasized in the study include lactate
dehydrogenase, aldolase, and glutamate
dehydrogenase. These enzymes showed
good results in the diagnosis of malarial
infection and at the same time Plasmodium

species differentiation. Other malarial
enzymes were also identified such as
glyceraldehyde-3-phosphate dehydrogenase,
thioredoxin peroxidase-1, dihydrofolate
reductase-thymidine synthase, hypoxanthine
phosphoribosyltransferase, phospho-
glycerate mutase, and fructose biphoshate
aldolase, however, further studies are still
required to validate these enzymes as
potential diagnostic biomarkers. Whereas,
matrix metalloproteinases are the prime
enzymes identified in association with
African trypanosomiasis. Expression of
these enzymes in the surfaces of
trypanosomes could be used as antigenic
determinants for detecting Trypanosoma

and differentiating it from Leishmania. In
general, identification of enzymes mentioned
in the study can be used as possible
alternative for routine microscopy in the
diagnosis and differentiation of Plasmodium

and Trypanosoma species. Possible applica-
tion of these enzymes as immunologic
markers in various diagnostic test kits should
be further studied.
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