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ABSTRACT

Introduction. Despite the growing popularity of utilizing observational studies for determining associations with 
public health implications, there is limited literature using them for examining and quantifying the effects of exposures 
or treatments: The study compared traditional regression with scoring approaches in estimating treatment effects 
considering the noted limitations in the dataset.

Methods. We conducted a secondary analysis of previously collected retrospective cohort data derived from 
maternal-neonatal dyads delivered prematurely in a tertiary hospital. Propensity scores (PS) were estimated using 
logistic and boosting regression. These scores were implemented into matching, stratification, and weighting models. 
The estimated measures of effect from traditional regression and PS-adjusted models were compared using certain 
metrics (i.e., the width of CI, SE, AIC, BIC). Sensitivity analysis was also performed.

Results. We included data from 562 patients (123 untreated and 439 treated). Both the estimated scores demonstrated 
satisfactory fit and reduction in the standardized differences between the groups. However, the logit-estimated scores 
had better prediction (AUC: 0.71 vs 0.66) and forecasting properties (Brier: 0.15 vs 0.17) than the boosting-estimated 
scores. All generated statistical models demonstrated a reduction in the occurrence of respiratory morbidity among 
preterm neonates exposed to a single-dose antenatal corticosteroid (ACS) (ORs ranged from 0.37 to 0.59). The 
estimated average treatment effects (ATE) and effect among those treated (ATET) from various models suggested 
a small benefit attributed to the single-dose ACS (ATEs range from -0.09 to -0.41; ATETs range from -0.07 to -0.17).

Conclusion. PS estimated using logistic regression performed better than those estimated using machine learning 
strategies. The matching model using the said scores demonstrated better fit and parsimony over conventional and 
propensity-adjusted models. Future studies are recommended to improve the application of these analytic techniques 
in real-world data.
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INTRODUCTION

The identification and quantification of treatment or 
exposure effects in social and health sciences remain to be an 
important methodological challenge. Experimental studies 
have always been accepted as the “gold standard” for deter-
mining the effects of exposures (e.g., treatments, programs, 
risk factors) on the occurrence of outcomes. One can draw 
models to investigate relationships between manipulable 
exposures to isolate outcome-exposure associations - with 
the advantages of temporality, and the randomization on 
treatment allocation guaranteeing that the sampling design 
will result in having two groups at the beginning of the 
study – not influenced by their social, clinical, and demo- 
graphic characteristics. Furthermore, the possibility of 

VOL. 56 NO. 16 202296

ORIGINAL ARTICLE



accounting for both known and unknown confounders 
in the association is very likely to be collected with high 
quality and precision in experimental than observational 
studies.1

However, such relative ease of estimating effect measures 
has always been a problem for quasi- and non-experimental 
studies. The unknown mechanism of selecting participants 
among studies, which do not involve a random allocation 
method, leads to a non-probabilistic equivalence between 
the groups at baseline; or these studies tend to create 
comparison groups who do not possess similar pre-exposure 
characteristics. Despite, observational studies having the 
same intent as clinical trials – the presence of these threats 
to validity results in bias or less precise estimates than those 
gathered from studies where manipulation and randomi-
zation were part of the design. These factors not only made 
direct computation of treatment or exposure effects more 
difficult but also weakened the strength and rigor of these 
estimated measures of effect.2

Currently, there is growing interest in the use of 
observational studies for assessing exposure effects on 
outcomes – especially when randomization is difficult, the use 
of controlled experiments is not feasible, and ethico-moral 
considerations are imperative.3 Over time, improvements 
in the creation of better study designs among observational 
studies such as increasing the number of measured variables, 
and other methods to account for and provide better solutions 
to reduce bias and confounding. Regression has appeared to 
be the standard approach to analysis but the difficulty in 
satisfying the necessary assumptions such as adequacy of 
sample size for rare conditions and exposures; non-linearity of 
certain associations, large sets of risk factors, or confounding 
variables to the association; and comparability of the study 
groups.4

A relatively recent method used in addressing the afore-
mentioned problem is the use of propensity score analysis. 
In this approach, the exposed and unexposed individuals are 
equated based on the estimated risk of receiving the exposure 
hence, creating multiple matches or strata where units within 
a certain propensity score, regardless of their exposure status, 
have comparable pre-treatment, measured characteristics.5 
Thereby, we can assume that the presence of exposure within 
a certain increment of the propensity score was random, and 
yielded relatively unbiased estimates of treatment effects.6

Moreover, the potential and advantages of machine 
learning algorithms in the context of propensity score analysis 
were noted in the literature.7 Logistic and probit regression 
have been the staple methods in estimating propensity scores, 
but algorithms particularly the generalized boosting methods 
(GBM) can minimize imbalances by taking into account any 
non-linear or higher-order association between exposure 
status and the known covariates, iteratively – and with fewer 
assumptions that have to be satisfied.8

However, a caveat of using propensity scores and machine 
learning techniques is that these have not been often used 

clearly and intricately in the analysis of epidemiologic and 
public health data.9 This is attributed to the current lack of 
a strong and well-understood theoretical background for 
using these approaches, and their application in the existing 
limitations in real-world data such as a limited number of 
observations, or evaluation of partial/incomplete regimens.

With this, an important question remains to be addressed 
- among the currently available methods, which technique 
would be most appropriate in determining the effects of 
treatment from an incomplete exposure in the reduction of a 
health-related outcome using observational data?

In the Philippines, preterm birth remains to be a major 
health problem accounting for around two-thirds of all 
newborn deaths from respiratory-related conditions such 
as respiratory distress syndrome and neonatal pneumonia.10 
The pharmacologic agent corticosteroids, accelerate the 
maturation of the fetal lung and promote the production of 
pulmonary surfactant reducing the incidence of respiratory 
distress syndrome.11

Despite the recognition of antenatal corticosteroid 
(ACS) therapy, its utilization has not been optimistic 
attributed to the failure of clinicians to identify the onset 
of preterm labor,12 and differing attitudes towards its use 
when completion of doses is not possible.13 The current local 
guidelines recommend administering four doses of ACS 
to the pregnant woman intramuscularly at a twelve-hour 
interval.14 Thus, some premature newborns were only able to 
receive only a single dose or not any dose of corticosteroids 
at all before delivery – resulting in poorer outcomes and 
prognoses among these neonates.

It has been noted that only 5% of women indicated to 
receive ACS, which account for 90% of childhood deaths 
globally in the year 2000. had the intervention among 42 
countries.15 An audit of Southeast Asian hospitals has 
recorded poor utilization of ACS in obstetric care,16 the 
median rate of ACS utilization was 54%, the average rate in 
the Philippines was 47%, and 58% in Cambodia.17

Foreign guidelines mentioned the importance of admi-
nistering the said single-dose regimen even when the second 
(or succeeding) doses cannot be given due to highly likely 
imminent, preterm delivery. However, there is still a lack 
of explicit recommendations in Philippine guidelines.13

The current study intends to use propensity score and 
machine-learning procedures to evaluate the utility of a 
single, 6-mg dose of Dexamethasone intramuscularly before 
birth which is given as an “emergency” dose among at-risk 
women. The focus of the current research is to demonstrate 
the estimation of treatment effects using various techniques. 

METhODS

Before the conduct of the study analysis, approval from 
the University of the Philippines Manila – Review Ethics 
Board was ensured.
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Participants and Setting
The dataset used was derived from a retrospective cohort 

of neonates delivered at 24 to less than 34 weeks of gestation 
in a tertiary general hospital in the Philippines.18 The limited 
number of eligible patients in the institution where the 
dataset was obtained, and the transition of their medical 
records section have limited the availability of patient records 
(maternal and neonatal). However, the propensity score 
and machine-learning methods performed in the current 
study were developed to account for a limited number of 
observations, or few events per confounder.1,19

Identifiers and variables irrelevant to the current study 
were removed from the original data after permission was 
sought from the researchers who reviewed the patient charts. 

Variables in the Dataset
The dataset included information from 562 patients with 

a disparate distribution of treated, those whoreceived a single-
dose ACS (n = 439), and untreated, no ACS dose prior to 
delivery (n = 123), neonates in the study.

The exposure of interest is a dichotomous variable 
represented as the administration of a single-dose ACS or 
no dose given in utero. Likewise, the outcome of interest 
is also dichotomous, referring to the presence of any form 
of the respiratory-related condition among prematurely 
delivered neonates. These conditions included the presence 
of respiratory distress syndrome or transient tachypnea of the 
newborn, the need for surfactant administration; the need for 
oxygen support such as continuous positive airway pressure, 
oxygen hood, or mechanical ventilation; and the occurrence 
of respiratory failure and/or mortality from respiratory failure.

The association between the exposure and the outcome of 
respiratory-associated morbidity was determined using a large 
set of covariates. For the statistical approaches to control for 
bias and confounding, variables that are associated with the 
exposure alone, and those related to both the outcome and the 
exposure were included in the study dataset. These variables 
included maternal (e.g., maternal weight, poor obstetric 
history, presence of co-morbid conditions, maternal age), and 
neonatal covariates (e.g., birth weight, age of gestation during 
delivery, sex of the baby, Apgar scores) were accounted for in 
the analysis.

Statistical Analysis
The data analysis involved multiple steps, utilizing the 

software, Stata version 13.20 Given the observation nature 
of the dataset, the clinico-demographic characteristics 
between the no ACS and the single-dose group are expected. 
Traditional regression models specifically crude, full 
multivariable, and adjusted logistic regression models were 
developed to estimate the association between exposure to 
ACS and respiratory morbidity.

Propensity scores (PS) were later conditioned and 
implemented and were estimated using conventional logistic 
regression and generalized boosting regression models. 

A causal diagram, as shown in Appendix C, was used to 
determine which variables were included in the propensity 
score (PS) estimation model. Other variables such as the 
birth weight, birth percentile, fifth minute Apgar score, and 
sex of the neonate were not included in the PS estimation 
model because they are more associated with the outcome, 
than the treatment assignment but considered in the 
measurement of effects.

The best-fitting logistic model to estimate a propensity 
score involved regressing the exposure (single-dose antenatal 
corticosteroids) with most of the known covariates. Initially, 
logit models that include interactions and higher order terms, 
to account for the complex pathways between the measured 
covariates, were planned to estimate the score. However, 
they were not able to achieve convergence, and the limited 
sample size led to a small matrix size unable to accommodate 
splines and interactions.

A generalized boosted regression algorithm was the 
other method utilized in estimating propensity scores. Most 
specifications used a maximum number of iterations (trees) at 
10,000, a training fraction at 90%, a shrinkage factor of 0.001, 
using all observations for building each tree (bag: 1.0), and a 
depth of interaction set to five.

After estimating the PS, the achievement of balance on 
the covariates between the exposure groups was repeatedly 
assessed, and this iterative step is needed to ensure significant 
control of imbalance between the study groups. Plots such 
as kernel density, standardized bias, and paired bar charts 
were also used to examine visually whether assumptions in 
performing PS analysis were satisfied.

Once sufficient balance and overlap were achieved, 
these scores were implemented to ascertain the association 
between outcome and exposure. The estimated scores were 
to be implemented using matching models, and stratification 
for the logistic estimated scores. The boosted scores are 
implemented using inverse probability weighting and the 
approach proposed by Linden21 where the scores were used 
both as weight and as a stratifying variable via marginal 
mean weighting through stratification. The difference in 
conditioning techniques is attributed to machine learning 
algorithms readily producing weights than the actual score, 
whereas an actual value can be derived from conventional PS 
estimation approaches.

Model fit and discrimination between the propensity 
score estimation models were assessed using the c-statistic, 
reduction in standardized differences, and the Brier scores. 
The best fitting model was selected using the following 
metrics: (a) width of the confidence interval of the odds ratios, 
(b) standard error of the regression, (c) Akaike information 
criteria AIC, and (d) Bayesian information criteria BIC.

These four metrics have been used in literature as 
important bases for model selection. The width of a confidence 
interval represents the amount of information collected and 
the precision with which the data are collected. Hence, a 
smaller width of the confidence interval is desired. While 
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smaller values of the standard error are preferred suggesting a 
better fit between the values of the estimate and the true value 
of the unknown parameter.22 The AIC aims at looking for 
the best-fitting approximate model, while the BIC focuses on 
identifying the most appropriate and parsimonious model.23 
A lower value of these information criteria suggests a closer 
approximation of the estimated model to the true data.

The best performing traditional, logit PS, and GBM PS 
models were used to estimate the average treatment effects on 
the sample (ATE), and the average treatment effects among 
neonates who were exposed to a single-dose ACS (ATET).

Moreover, Mantel-Haenszel bound estimates24 were 
used on the estimates of effect to examine the possible impact 
of unobserved heterogeneity (hidden or residual bias) in the 
exposure groups.

RESUlTS

Data from 123 (21.89%) maternal-neonatal dyads who 
did not receive any dose of ACS; and 439 (78.11%) who 
received a single dose of ACS before delivery were used 
to estimate the effects of the latter exposure. It has been 
established in a previous study18 that there were inherent 
differences between the exposure groups (Appendix A) 
attributed to the lack of randomization and methodological 
constraints from observational study designs.

Moreover, the presence of indication bias can be suspected 
among women who are classified as high-risk pregnancies 
– like those with hypertension, congenital heart disease, or 
poor obstetric history are more commonly advised to receive 
the exposure (single-dose corticosteroids) as a rescue dose 
or an initial, incomplete dose – than other pregnant women 
do. Similarly, newborns from mothers who have preterm, 
premature rupture of membranes, or were born with other 
conditions – were also more likely to receive the exposure but 
at a higher risk of developing the outcome.25

As previously mentioned, the use of propensity score 
approaches is attractive considering the current dataset – 
observational, with too many potential confounders yet a 
relatively small number of observations. Propensity score 
analysis tends to control for confounding and biases by 
modeling the selection mechanism or allocation of treatment 
while at the same time, reducing the dimensionality of data 
by using a single scalar vector to estimate the association 
between the treatment and outcome of interest.4

Estimation of the Propensity Scores
Table 1 showed the goodness-of-fit statistic for the 

logistic estimated scores, and it demonstrated a satisfactory 
fit. Because of the lack of such tests in machine learning 
approaches, the optimal number of iterations was presented.

The optimal number of strata to examine associations 
was nine for the logistic estimation model while the optimal 
number of strata for the machine learning estimation model 
was five. The previous table also presented the area under 
the receiver operating characteristic (ROC) curve, and the 
computed overall Brier scores. The logit-estimated scores have 
higher values of the area under the curve, and lower values 
of the Brier scores – than scores estimated using generalized 
boosted models.

In terms of covariate balance, all covariates in either 
estimated score were within the (positive and negative) 
20% estimate of bias after implementing them on the 
dataset. However, using a more stringent cut-off,26 there 
were more covariates with ASD greater than 0.10 in the 
GBM-estimates scores than the logit ones. Other authors 
have suggested extending the cut-off up to 0.20, especially 
in smaller samples where not all covariates will likely have 
an estimated standardized difference within the previous 
threshold.2

Kernel density plots (Figure 1) were created to assess the 
degree of overlap, and how similar the distributions of the 
comparison groups are while accounting for the propensity 
score estimated. It showed a substantial region of common 
support indicating that the use of the estimated scores can 
emulate the counterfactual scenario.27 However, the GBM-
estimated scores demonstrated better overlap.

The paired bar charts (Figure 2) showed similarity bet-
ween the distribution of the groups, and the logit-estimated 
scores, even with increasing the quantiles of the score to 18 
subclasses, the plot showed that the unexposed participants 
had counterparts in the exposed group at all levels of the 
quantiles. While for the GBM-estimated scores, the plot 
showed that not all participants who received a single-dose 
ACS did not have unexposed counterparts at the fourth 
and fifth quantile. The presence of areas of non-overlap 
between the treatment groups has important implications 
in subsequent analysis to be performed. A remedy to these 
areas of no common support is to reinforce subjects within 
the overlap during the implementation of these scores.28

These findings and visual assessment suggest that the 
scores estimated from the logistic regression model can 

Table 1. Comparison of model fit, prediction, and balance between estimated scores
Model HL X2 p-value Strata MH X2 p-value AUC (95% CI) SE Brier Sanders Reliability Max ASD ASD >0.10 Max VR

Logistic 8.11 0.44 9 2.78 0.95 0.71 (0.66-0.77) 0.028 0.1465 0.1499 0.0023 0.17 1/23 1.18
Boosting 9999 5 0.35 0.99 0.66 (0.61-0.71) 0.027 0.1674 0.1689 0.0067 0.20 8/23 1.41

HL – Hosmer-Lemeshow test, MH – Mantel-Haenszel test, AUC – Area under the receiver operating characteristic curve, SE – Standard error, Brier 
– Brier score, Sanders – Sanders modified Brier score, Reliability – Reliability-in-the-large, Max ASD – Maximum absolute standardized difference, 
ASD – Absolute standardized difference, Max VR – Maximum variance ratio
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discriminate and forecast the antenatal corticosteroid status 
and achieve covariate balance between the comparison groups 
in the sample slightly better than those estimated using a 
machine-learning algorithm.

Building of Statistical Models
Several models were considered to examine the effects 

of exposure to a single-dose ACS on reducing respiratory 
complications among preterm neonates (Table 2). Traditional 
logistic regression models were developed to examine the 
association between ACS and respiratory-related outcomes. 
The crude logistic model (OR 0.43, 95% CI 0.27, 0.67, p < 
0.01), and the full multivariable regression model (OR 0.45, 
95% CI 0.23, 0.90, p = 0.02) suggested benefit from a single-
dose ACS.

Likewise, the adjusted model formed after evaluating 
the presence of probable confounders and/or effect measure 
modifiers in the dataset demonstrated a similar reduction in 
the odds (OR 0.44, p = 0.01). The significant confounders 
accounted for in this model included the presence of a poor 
obstetric history, neonatal birth weight, and age of gestation 
during delivery. There were no effect measure modifiers or 
significant interactions identified in this model.

All propensity score-adjusted models utilized a “doubly 
robust” approach – where two implementation strategies 
were employed. The optimal (kernel) matching model 
was followed by covariance adjustment to address residual 
imbalances from the previous conditioning procedure. Only a 
few observations were left unmatched, and the proportion of 
the dyads not matched is similar between ACS groups. The 

Figure 1. Kernel density plots of the estimated propensity scores.
ACS, antenatal corticosteroid

Figure 2. Paired bar charts of the estimated propensity scores.
ACS, antenatal corticosteroid
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matching model demonstrated a lesser likelihood of respi-
ratory morbidity among those exposed to a single-dose ACS 
than the other statistical models (OR 0.37, p = 0.01).

The other model implementing the logit-estimated score 
was a stratification model (OR: 0.58, p: 0.03) where the 
stratum variable of the logit-estimated score into panel data, 
with conditional logistic regression, was performed after.

In terms of the PS estimated using boosting, an inverse 
probability to treatment (exposure) weighting followed by 
forcing the computed weights in a regression model was then 
implemented (OR: 0.51, p < 0.01). The weights were readily 
generated from the boosting algorithm, and the presence 
of big values was examined using an arbitrary cut-off at a 
value of twenty29, but no “extreme” or “outlier” weights were 
identified. The said weights were then used also as a stratifying 
variable to create a marginal mean weighting through the 
sub-classification model (OR: 0.44, p < 0.01).

The effect measure from the IPTW model is more similar 
to those found when logit-estimated scores are used for 
stratification, and the one from the marginal mean weighting 
through stratification (MMWS) model is more alike to the 
odds ratio from the adjusted logistic model.

It was also noted that all the statistical models had 
point and interval estimates of the odds ratios less than the 
null value of one. Table 2 further showed that the different 
strategies concur the reduced likelihood of having respiratory 
morbidity among pre-term neonates can be attributed to 
exposure to a single-dose ACS given before delivery, than 
not receiving any dose at all.

The crude logistic had the smallest values of the confi-
dence interval and the standard error of the model. However, 
a crude model is not advised for estimating treatment effects 
since it does not control for the presence of confounding 
variables. The PS-matching model had the best fit, parsimony, 
and adequacy compared to the other statistical models 
evidenced by having the smallest values for both Akaike 
and Bayesian information criteria.

Considering the observations in the previous section 
suggesting that that the estimated scores from logistic 
regression performed better than PS computed using a 
boosting approach, the PS matching model was deemed 

as the best fitting to estimate treatment effects conferred 
by a single-dose ACS over no ACS dose before preterm  
delivery.

Estimation of the Average Treatment Effects
Even if the PS matching model has been selected as 

the most appropriate model for estimating treatment effects, 
the researchers also considered estimated effects from the 
best performing conventional (adjusted logistic model) and 
boosting PS adjusted (MMWS) models (Table 3).

The negative values of either average treatment effects 
suggest improved outcomes among those who had a single-
dose ACS, compared to the no ACS group. It also suggested 
a similarity to absolute risk reduction and can be used to 
compute other metrics such as numbers needed to treat.30

The effects of the boosting approach did not demonstrate 
a significant reduction in the likelihood of the outcome among 
those exposed to a single-dose ACS. Whereas the adjusted 
logistic and PS matching models indicated a relatively small 
but statistically significant reduction in the probability of the 
outcome in the sample, and among those treated.

Using the best-fitting model – the one utilizing PS 
matching, the average treatment effect alluded to a reduction 
in the risk of developing respiratory morbidity by around nine 
percent among preterm neonates who received a single-dose 
ACS, and a relatively smaller effect at eight percent among 
those who received the intervention.

Table 2. Summary of the statistical models for single-dose antenatal corticosteroid (ACS) and respiratory morbidity
Models N OR 95% CI SE AIC BIC

Crude logistic model 562 0.43 0.27-0.67 0.099 740.74 749.41
Full logistic model 562 0.45 0.23-0.90 0.159 439.22 525.85
Adjusted logistic model 562 0.44 0.23-0.84 0.145 434.52 456.18
PS matching model 546 0.37 0.17-0.80 0.147 326.72 352.54
PS stratification model 562 0.59 0.36-0.94 0.142 690.40 694.73
PS weighting model 562 0.51 0.31-0.85 0.131 1687.83 1696.50
PS MMWS model 562 0.44 0.28-0.70 0.103 741.50 750.27

OR – Odds ratio, SE – Standard error, AIC – Akaike information criterion, BIC – Bayesian information criterion, PS – Propensity score, 
MMWS – marginal mean weighting through stratification

Table 3. Assessment of the average treatment effects
Measure/Model Effect (95% CI) SE z p-value
ATE

Adjusted -0.27 (-0.18 to -0.37) 0.047 -5.78 <0.01
Matching -0.09 (-0.03 to -0.15) 0.032 -2.84 <0.01

MMWS -0.41 (-0.12 to 0.04) 0.039 -1.04 0.30
ATET

Adjusted -0.17 (-0.10 to -0.24) 0.037 -4.54 <0.01
Matching -0.08 (-0.02 to -0.15) 0.034 -2.48 0.01
MMWS -0.07 (-0.15 to 0.01) 0.042 -1.61 0.11

ATE – Average treatment effect, ATET – effect among those treated, 
MMWS – marginal mean weighting through stratification
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Sensitivity Analysis
As previously mentioned, the use of different multivariable 

regression models and conditioning approaches on an 
estimated propensity score is, in itself, a form of sensitivity 
analysis.31 Another approach is to compare the computed odds 
ratio against various likely and plausible measures of effect. 
Based on these comparisons, the selected propensity score-
matching model tended to have an underestimated odds ratio 
from a single-dose ACS if we consider that the “true” effect 
lowers the likelihood of respiratory disease by half. However, 
the computed effect was not that much different from what 
was observed in other models.

The impact of unobserved confounding on the 
matching model was also evaluated using Mantel-Haenszel 
bound estimates (Appendix B). Assuming that there is 
no unmeasured confounding, the findings provide strong 
evidence that the use of single-dose ACS is associated with 
better neonatal outcomes (Γ: 1.00, QMH+: 1.89, p = 0.03). 
However, if there is a hypothetical unmeasured covariate 
affecting the likelihood of the neonates to receive ACS 
beyond 20%, the odds ratio of the PS matching model will 
likely move toward the null value (Γ: 1.20, QMH-: 1.14,  
p = 0.13).

It suggests caution in considering the estimated treat-
ment effect from the PS matching as the description of a 
“definite true” effect from a single dose ACS on neonatal 
respiratory morbidity. However, it has been emphasized 
that the bound estimates are “worst-case” scenarios, and 
the contribution of the un-measured confounding variable 
on the exposure assignment would need to be quite large to 
undermine the estimate from the model.32

DISCUSSION

The general outcome from the models is that the use 
of single-dose antenatal steroids before delivery, though 
incomplete, showed a possible reduction in the risk of 
developing respiratory-associated conditions, compared 
to not receiving any steroid dose at all. These findings are 
consistent with studies,33,34 showing that better outcomes 
can still be benefited from incomplete corticosteroid doses 
among preterm neonates. However, the estimated benefit 
from a single-dose ACS is relatively small compared to the 
more improved outcomes among those neonates who have 
completed the regimen.12,16,17 

Observational studies play an important role when 
experimental studies are not yet available, or not possible to 
perform. Improvement in the design of the study or a focus 
on the statistical methodology has been recommended to 
generate better quantification of treatment effects derived 
from non-experimental studies.1

The appropriateness of using propensity score analysis 
was exemplified in the study since it can accommodate studies 
with binary or time-to-event outcomes, or when there are 
more confounders than can be adjusted realistically using 

conventional approaches.35 Most studies have reported that 
propensity score analysis is a large sample strategy to satisfy 
the assumptions of balance and sufficient overlap36 but there 
are no standard guidelines as to what constitutes enough 
sample size. However, the paradox of using propensity scores 
is that when using larger sample sizes, its statistical power was 
found to be lower than standard regression methods.20

The logistic PS estimation model was built using 
only first-order terms due to higher terms like splines and 
interactions were not accommodated. This contrasted with 
what has been advised in the literature.37,38 Some authors 
mentioned that these terms result in a very complex model, 
or one heavily dependent on the functional forms of splines 
and interactions to control for bias and confounding.39 The 
use of such terms in the PS model also does not assure that 
covariate balance is achieved.40 However, this was not a 
concern for PS estimation models using machine-learning 
techniques since complex relationships are embedded in 
their inner workings.

Another unforeseen observation is the better performance 
of propensity scores estimated using conventional logistic 
regression compared to those derived from machine-learning 
algorithms. The logit-estimated scores had larger values of 
the area under the ROC curve, and lower values of the Brier 
scores and its decomposition values than boosting-estimated 
scores suggesting better capability to predict observed 
treatment status. It also had a more acceptable region of 
common support, even if the kernel density plot had better 
overlap in the GBM-estimated scores, the paired bar chart 
showed a lack of unexposed counterparts in some quantiles 
of the said score. In addition, there was better attainment of 
covariate balance from the standardized differences between 
the exposure groups in the logit-PS.

These findings were in contrast with what was found by 
several authors7,41 where scores from traditional estimation 
approaches such as logit or probit regression had fewer 
desirable properties than those computed from ensemble 
methods like generalized boosting models. A possible 
explanation is that generalized boosted regression belongs 
to automated procedures using an iterative estimation 
strategy to optimize balance on select covariates.42 Hence, 
the distribution of boosting-estimated scores is more similar 
between the single-dose and the no ACS group to mimic 
the randomization and allocation in experimental studies. 
However, the resulting pairings from the GBM-estimated 
scores may not be substantially alike to balance the potential 
confounding factors evidenced by the balance metrics found 
in the study.43 This is given that boosting approaches tend to 
focus on improving variance metrics over covariate balance – 
but the achievement of the latter is more seen as an indicator 
of unbiasedness in propensity score literature.44

Another explanation would be its dependence on a large 
sample size since the data is reduced every time a predictor 
or covariate for estimation is considered. The trees created 
from the GBM-estimation model might have reached a stage 
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where there is not sufficient data to improve on the scores, yet 
the generated trees are still too shallow to achieve balance.45 
It has been noted that some algorithms may automatically 
prefer certain types of variables such as those with a greater 
number of categories without regard for their importance 
in prediction.46

In summary, it can be said that current evidence suggests 
and supports the use of logistic regression in estimating the 
propensity scores – because when the models are specified 
appropriately via consideration of interaction and higher order 
terms in the model. The previously mentioned disadvantages 
of the logistic regression appear to be reduced and preferred 
over the “black box” nature of machine learning algorithms 
for propensity score analysis.47

Another important finding is the better performance 
of propensity score matching, compared to other proposed 
methods of dealing with observational data. The advantage of 
propensity score matching over traditional methods would be 
the use of only one scalar variable, the probability of exposure, 
to create matches. Another would be the propensity score 
replacing the collection of identified covariates – even if 
some variables have a weak to moderate association with the 
outcome, the degree of possible harm can be neglected.

PS matching has relatively milder assumptions and 
drawbacks.48 The use of a kernel matching procedure, a form 
of optimal matching, was appropriate for this dataset since 
it can deal with situations where there is a relatively small 
number of control (unexposed) subjects, or when there are 
few observations in the sample.9 Moreover, the matching 
model used for the current study was doubly robust with 
regression adjustment addressing possible imbalance retained 
after performing the first PS conditioning technique.37

One downside of matching is the need for large samples 
to create good matches, especially because propensity score 
approaches are commonly used when either outcome or 
exposure is small.49 Reduction in sample size, due to incom-
plete matching, can affect the external validity and avoid 
as much as possible. In the study, all the models except the 
matching model retained 562 observations in the analysis, but 
the loss in observations was smaller compared to other studies 
that used matching.50 However, it has also been emphasized 
the trade-off between losing some data and improving the 
efficiency of the propensity score-matching model to generate 
more unbiased treatment effect estimates.51 Moreover, the 
larger value of the standard error or interval estimate width 
is attributed to the preference for matching procedures to 
minimize covariate imbalance than variance-related metrics.52

In addition, the findings of the study did not show 
improvement in bias reduction and confounder control 
attributed to the use of weighting procedures. An explanation 
is that the generation of weights in propensity score analysis 
is prone to residual systematic error from the estimation 
models, thus reducing the advantages offered by sub-
classification.53 The use of weighting strategies to implement 
propensity scores was also discouraged in settings where the 

number of observations is small, just like the situation in the 
current study.54

The effects on those who received the exposure are slightly 
different from the effect in the overall sample. One possible 
explanation is that neonates exposed to a single-dose ACS 
in utero have larger birth weights and older ages of gestation 
during delivery. Hence, the better outcomes cannot solely be 
attributed to the exposure, but to prognostic variables – thus, 
the computed effect is smaller.

The current study showed that observational studies 
have a potential for use in quantifying the impact of certain 
interventions (e.g., treatments, programs, policies). This is 
important in situations like the current research inquiry where 
the conduct of an experimental or RCT design is not only 
unethical but also not feasible due to numerous constraints. 
The average treatment effects from the propensity score-
matching model showed the degree of potential benefit from 
a partial dose of antenatal corticosteroid – considering the low 
proportion of individuals who can complete the ACS regimen 
before delivery.

A strength of the current study is the separation between 
estimating PS from two approaches, and then implementing 
these estimated scores using various strategies.55 The presented 
measures of effect in the study were also more like to how 
the effects from experimental designs are presented such as 
average treatment effects, risk reduction, and numbers needed 
to treat.56 These measures are also relatively more tangible 
and can lead to better planned clinical treatment and policy-
based decisions.

In addition, the current study presented two ways of 
performing sensitivity analysis on the estimated treatment 
effects from propensity score-adjusted models. The first one 
simulated how different the estimated effect odds ratios varied 
given the range of plausible “true” values of the odds ratio for 
the association between single-dose antenatal steroids and 
respiratory morbidity.57 Rosenbaum-based Mantel-Haenszel 
bound estimates were used as the second approach, to infer 
the possibility that unmeasured confounding variable/s 
introduce heterogeneity in the probability of exposure and/or 
the subsequent outcome.58

The inherent methodological constraints in the used 
dataset are an important limitation in the study, which 
included the relatively small number of observations, 
unequal distribution of treated and untreated observations, 
large numbers of covariates that are potential confounders, 
and the possible misspecification in the models. Propensity 
score analysis may control for some of these concerns but 
it does not assure a good remedy for systematic errors that 
are inherent when using non-experimental data.59 Despite 
the increased use of PSA, another important limitation in 
the study was the lack of clear guidelines or best practices 
available in the literature that sets as a metric of determining 
if the PS procedure was performed well yet,50 and more so, 
with machine learning procedures in the context of propensity 
score analysis.
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In line with the said limitation, the analysis performed 
in the study was built on what was proposed in statistical 
references and reported in the available literature. It is 
recommended that future studies report sufficiently the 
various aspects and steps undertaken in performing the 
propensity score analysis – not just as a means of assessing 
the quality and validity of the findings, but also as a learning 
point for future investigators.

Future studies might also address specific concerns 
regarding the conduct of the propensity score analysis. One 
example is the use of calibration procedures to refine the 
estimation of propensity scores from covariate-heavy datasets 
while remedying problems such as large variance metrics, 
poor overlap, or incomplete control of bias.45 Another is the 
evaluation of other balance-related metrics for machine-
learning-based PS estimation,41 and other validation 
procedures in the context of PS analysis.

Experimental designs are the ideal method of evaluating 
and estimating the effects of exposures such as treatments, 
programs, or policies. However, these observational studies 
play an important role in the creation of practice guidelines 
and policy development especially since experimental designs 
are too difficult or impossible to perform in the context of 
maternal and child health.48

The study findings suggest that improvement in the 
design of the study, and a focus on the statistical methodology 
have been recommended to generate better quantification of 
treatment effects derived from non-experimental studies.5 
Moreover, the study contributed to the possible array of 
statistical strategies to address bias, confounding, and other 
potential threats to the validity of effect estimates from 
these non-randomized data commonly collected in perinatal 
research.

However, propensity score-adjusted analysis and 
machine learning methods cannot replace the need for good 
study design, and quality of gathered data. These methods are 
also recommended as an adjunct approach to conventional 
regression analysis and not a replacement for such techniques.

Ultimately, the choice of which analytic technique highly 
depends on the objectives of the study, the size of the available 
data, the number of covariates and confounding variables 
identified as relevant; and the prevalence of the outcome and 
exposure.60
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APPENDICES
Appendix A. Distribution of Clinico-Demographic Characteristics between Study Participants

Characteristics
No ACS (n=123) n (%) Single-dose (n=439) n (%)

Without with Outcome Without with Outcome
Frequency (%) 30 (24.39) 93 (75.61) 189 (43.05) 250 (56.95)
Maternal Factors
Age during pregnancy (years)

19 to 34 19 (63.33%) 70 (75.27%) 127 (67.20%) 172 (68.80%)
≤18 or ≥35 11 (36.67%) 23 (24.73%) 62 (32.80%) 78 (31.20%)

Education
At most high school 18 (60%) 60 (64.52%) 140 (74.07%) 196 (78.40%)
Reached college 12 (40%) 33 (35.48%) 49 (25.93%) 54 (21.60%)

Maternal weight a 56.57 ± 10.44 54.62 ± 9.50 54.69 ± 9.65 54.66 ± 10.23
Gravidity b 3 (1–9) 2 (1–10) 2 (1–10) 2 (1–9)
Parity b 1 (0–6) 1 (0–8) 1 (0–9) 1 (0–8)
Prenatal visits

≤4 consults 20 (66.67%) 68 (73.12%) 138 (73.02%) 189 (75.60%)
>4 consults 10 (33.33%) 25 (26.88%) 51 (26.98%) 61 (24.40%)

Poor obstetric history
Absent 23 (76.67%) 75 (80.65%) 148 (78.31%) 213 (85.20%)
Present 7 (23.33%) 18 (19.35%) 41 (21.69%) 37 (14.80%)
History of abortion 7 (23.33%) 14 (15.05%) 23 (12.17%) 31 (12.40%)
Preterm labor 1 (3.33%) 6 (6.45%) 22 (11.64%) 13 (5.20%)

Presence of conditions
Hypertension 1 (3.33%) 14 (15.05%) 24 (12.70%) 45 (18%)
Gestational diabetes 1 (3.33%) 3 (3.23%) 13 (6.88%) 10 (4%)
Placental conditions - 1 (1.08%) 4 (2.12%) 5 (2%)
Other conditions - 5 (5.38%) 5 (2.65%) 20 (8%)

Type of labor
Spontaneous labor 24 (80%) 68 (73.12%) 124 (65.61%) 140 (56%)
Obstetric-induced 3 (10%) 12 (12.90%) 19 (10.05%) 49 (19.60%)
Medical-induced 3 (10%) 13 (13.98%) 46 (24.34%) 61 (24.40%)

Mode of delivery
Vaginal 21 (70%) 62 (66.67%) 122 (64.55%) 141 (56.40%)
Abdominal 9 (30%) 31 (33.33%) 67 (35.45%) 109 (43.60%)

a – mean ± SD, b – median (range)
ACS – antenatal corticosteroids, GA – Gestational age
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Appendix A. Distribution of Clinico-Demographic Characteristics between Study Participants (continued)

Characteristics
No ACS (n=123) n (%) Single-dose (n=439) n (%)

Without with Outcome Without with Outcome
Neonatal Factors
Age of gestation (weeks)

<28 - 25 (26.88%) 2 (1.06%) 32 (12.80%)
28 to 33 14 (46.67%) 51 (54.84%) 87 (46.03%) 151 (60.40%)
≤34 16 (53.33%) 17 (18.28%) 100 (52.91%) 67 (26.80%)

Birthweight (grams)
<1500 15 (50%) - 50 (26.46%) 5 (2%)
<2500 15 (50%) 38 (40.86%) 131 (69.31%) 136 (54.40%)
≥2500 - 55 (59.14%) 8 (4.23%) 109 (43.60%)

Rupture of membranes
Yes 2 (6.67%) 6 (6.45%) 13 (6.88%) 32 (12.80%)
No 28 (93.33%) 87 (93.55%) 176 (93.12%) 218 (87.20%)

Sex of the neonate
Female 11 (36.67%) 39 (41.94%) 89 (47.09%) 113 (45.20%)
Male 19 (63.33%) 54 (58.06%) 100 (52.91%) 137 (54.80%)

1st min Apgar score b 9 (5–9) 8 (2–9) 9 (6–9) 9 (1–9)
5th min Apgar score

Poor (<7) — 26 (27.96%) — 22 (8%)
Good (7-9) 30 (100%) 67 (72.04%) 189 (100%) 228 (91.20%)

Term status
Full term 21 (70%) 11 (11.83%) 77 (40.74%) 17 (6.80%)
Pre-term 9 (30%) 82 (88.17%) 112 (59.26%) 233 (93.20%)

Birth Percentile b 9 (2–91) 6 (1–97) 17 (2–97) 33 (23–40)
Pediatric aging category

Small for GA 18 (60%) 56 (60.22%) 59 (31.22%) 127 (50.80%)
Appropriate for GA 11 (36.67%) 34 (36.56%) 124 (65.61%) 117 (46.80%)
Large for GA 1 (3.33%) 3 (3.23%) 6 (3.17%) 6 (2.40%) 

a – mean ± SD, b – median (range)
ACS – antenatal corticosteroids, GA – Gestational age

Appendix B. Mantel Haenszel-based Rosenbaum 
Bound Estimates on the Matching 
Model

Gamma (Γ) QMH
– p-value QMH

+ p-value

1.0 1.893 0.03 1.893 0.03
1.1 1.505 0.05 2.301 0.01
1.2 1.144 0.13 2.668 <0.01
1.3 0.813 0.21 3.009 <0.01
1.4 0.508 0.31 3.326 <0.01
1.5 0.224 0.41 3.624 <0.01
1.6 -0.041 0.52 3.905 <0.01
1.7 0.046 0.48 4.171 <0.01
1.8 0.279 0.39 4.423 <0.01
1.9 0.500 0.31 4.664 <0.01
2.0 0.710 0.24 4.894 <0.01 

Appendix C. Causal Diagram for a Single-dose ACS and Respiratory-
associated Morbidity.
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