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IL-23/IL-17 axis in the pathogenesis and treatment of systemic lupus 
erythematosus and rheumatoid arthritis
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Abstract

Interleukin-23 (IL-23) and IL-17 are the gatekeepers of CD4+ T helper 17 (Th17) cells where IL-23 
is required for the development and expansion of Th17 cells that subsequently produce IL-17 to 
promote inflammation. Owing to such pro-inflammatory properties, the IL-23/IL-17 axis has emerged 
as an important mechanism in the pathogenesis of autoimmune diseases including systemic lupus 
erythematosus (SLE) and rheumatoid arthritis (RA). In recent years, therapeutic antibodies targeting 
IL-23 (e.g. ustekinumab, tildrakizumab, guselkumab) or IL-17 (e.g. brodalumab, secukinumab, 
ixekizumab) have been approved for the treatment of various autoimmune diseases. In this review, 
we describe the pathogenic mechanisms of IL-23/IL-17 axis in SLE and RA, as well as summarising 
the findings from phase II and III clinical trials of anti-IL-23/IL-17 therapeutic antibodies in SLE and 
RA patients. In particular, phase II study has demonstrated that the anti-IL-23 antibody (ustekinumab) 
confers enhanced treatment outcomes in SLE patients, while anti-IL-17 antibodies (secukinumab 
and ixekizumab) have shown improved clinical benefits for RA patients in phase II/III studies. Our 
review highlights the emerging importance of targeting the IL-23/IL-17 axis in SLE and RA patients.
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HIGHLIGHTS

1.	 IL-23/IL-17 axis plays vital pathogenic roles 
in autoimmune diseases including systemic 
lupus erythematosus (SLE) and rheumatoid 
arthritis (RA).

2.	 Phase II study has demonstrated that the 
anti-IL-23 antibody (ustekinumab) yields 
promising treatment outcomes in SLE 
patients.

3.	 Anti-IL17 antibodies (secukinumab and 
ixekizumab) confer significant clinical 
benefits for RA patients in phase II/III studies.

Interleukin-17 (IL-17 or IL-17A)
IL-17 is a potent pro-inflammatory cytokine 
that mediates protective immunity1 and acts as 
host defense against microbial pathogens.2  The 
family members of IL-17 consist of IL-17A (also 
known as IL-17), IL-17B, IL-17C, IL-17D, IL-
17E and IL-17F.2 IL-17 is mainly produced by 
CD4+ T helper 17 (Th17) cells3,4 in response 
to their stimulation by IL-23 produced by 
macrophages and dendritic cells (DCs).5,6 IL-17 

is also produced by CD8+ T cells, natural Th17 
cells, innate lymphoid cells (ILCs), and natural 
killer T (NKT) cells7-11 (Table 1). IL-17 is critical 
for the protection against extracellular bacteria, 
protozoa and fungal infections at mucosal and 
epithelial barriers.12 IL-17 signals through a 
heterodimeric receptor complex, IL-17RA and 
IL-17RC, where IL-17RA is found ubiquitously 
but can only signal in the presence of IL-17RC.13

	 However, IL-17 signalling contributes to the 
pathogenesis of autoimmune diseases such as 
rheumatoid arthritis (RA) and spondyloarthritis 
(SpA) where IL-17 directly aggravates the 
inflammation site by stimulating immune 
cells to produce pro-inflammatory cytokines, 
chemokines and other inflammatory mediators 
including nitric oxide (NO), prostaglandins and 
matrix metalloproteinases (MMPs).14 Aberrant 
production of IL-17 has also been implicated in 
systemic lupus erythematosus (SLE), rheumatoid 
arthritis (RA), inflammatory bowel disease (IBD) 
and psoriasis.3,15
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Interleukin-23 (IL-23) 
IL-23 (p19/p40) is an important cytokine in 
the development, expansion and proliferation 
of Th17 cells16 where it is produced by 
inflammatory myeloid DCs (mDCs), monocyte-
derived DCs (Mo-DCs), intestinal macrophages, 
eosinophils and epithelial cells17-21 (Table 2).
IL-23 is involved in the development and 
maintenance of autoimmune inflammation.22,23 
IL-23 belongs to IL-12 cytokine family which 
includes IL-12, IL-23, IL-27 and IL-35, and IL-23 
induces memory T cells to produce interferon-γ 
(IFN-γ) and potently enhances the expansion of 
Th17 cells for the production of IL-17.22,24

	 As a heterodimer, IL-23 is composed of p19 
and p40 subunit, the latter being shared with 
IL-12 (p35/p40).13,22 p19 expression is produced 
by antigen-presenting cells (APCs), T cells and 
endothelial cells, while p40 is particularly limited 
to APCs e.g. DCs, monocytes and macrophages.22 
IL-23 forms a disulphide-linked complex with 
p19 and p40 secreted by activated macrophages 
and DCs in peripheral tissues e.g. lung, skin and 
intestinal mucosa where the synthesis of both 
p40 and p19 subunits are within the same cell 
that produces IL-23.22

	 The IL-23 receptor, IL-23R, is found 

on activated memory T cells, NKT cells, 
macrophages, and DCs.9,25 Naïve T cells do not 
express IL-23R, while the receptor is expressed 
on activated Th17 cells.13 Binding of IL-23 with 
its receptor complex activates STAT3 signaling 
in Th17 cells that induce Th17 differentiation 
to gain effector functions including expression 
of pro-inflammatory cytokines IL-17, GM-CSF 
and IFN-γ.26,27 IL-23 is involved in the onset of 
several autoimmune inflammatory diseases such 
as psoriasis, colitis, gastritis, and arthritis22,28 
and high serum levels of IL-23 have been 
demonstrated in patients with SLE.16

IL-23/IL-17 axis in autoimmunity
The initial steps of naïve CD4+ T cells 
differentiation into IL-17 producing cells does 
not require IL-23, however IL-23 plays an 
important role in stabilising the phenotypic 
features of the Th17 lineage. IL-23 is important 
in the expansion and maintenance of Th17 cells.7 
IL-23 acts mainly on effector and memory CD4+ 
Th cells to enhance secretion of IL-17 by Th17 
cells22 and IL-23 is thus an upstream regulator 
for the production of IL-17.29 
	 The production of both IL-12 and IL-23 
requires nuclear factor-kappa B (NF-κB), and 

TABLE 1: Sources, production sites and mode of IL-17 production

Sources Production sites Mode of IL-17 production Reference

CD4+ T cells
Thymus/
peripheral 

lymphoid tissues

Upon activation and expansion, CD4+ T 
cells develop into CD4+ Th17 cells with the 
production of IL-6 by DCs that induce IL-17 
production

[9] 

CD8+ T cells

Thymus/
peripheral 

lymphoid tissues

CD8+ T cells develop into Tc17 cells, inducing 
IL-17 production. In Tc17 cells maturation, 
IL-23 is required for their expansion and 
maintenance

[10] 

Skin

Natural 
Th17 

(nTh17) cells

Skin and mucosa
Both transcription factors, RORyt5 and RORα6 
are expressed by Th17 cells, to produce IL-17 
and also express the production of IL-23R

[11]

Thymus
Similar with adaptive Th17, nTh17 cells 
also develop in the thymus and induce IL-17 
production

[8]
 Innate 

lymphoid 
cells (ILCs)

Gut and skin Produce IL-17 in response to inflammatory 
cytokines and stress

NKT Thymus and liver

NKT cell subsets are categorised based on CD4 
and NK1.1 expression, and tissue of origin.
Activated CD4-NK1.1- NKT cells produce high 
levels of IL-17

[7]
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TABLE 2: Sources, production sites and mode of IL-23 production

Sources Production sites Mode of IL-23 production Reference

Inflammatory 
myeloid dendritic 

cells (mDCs)
Bone marrow

gp120-treated with mDCs induced 
production of IL-23, which then 
upregulated the suppressor of 
cytokine signaling 1 (SOCS1) 
protein in T cells

[17]

Monocyte-derived 
DCs (Mo-DCs) Bone marrow

Treatment with PGE2 has been 
demonstrated to act in a cAMP-
dependent manner to elevate IL-23 
production in human Mo-DCs 

[21]

Intestinal 
macrophages Intestine

As IL-10 is an anti-inflammatory 
cytokine which limits mucosal 
immune responses, the addition of 
IL-10 reduces IL-23 production by 
intestinal macrophages in mice

[19]

Eosinophils Lung

Confocal microscopy on cells 
obtained by bronchoalveolar
lavage 8- and 54-hours post-
infection with A. fumigatus 
were performed to confirm that 
eosinophils produced IL-23p19 and 
IL-17A in mice

[18]

Epithelial cells
Gut 

(Intestinal epithelial 
cells)

Lymphotoxin beta receptor (LTβR) 
signalling in intestinal epithelial 
cells promotes self-repair after 
mucosal damage (wound healing) 
and essential for epithelial IL-23 
production 

[20]

these cytokines trigger initial immune responses 
leading to Th1 or Th17 cell-mediated immunity. 
Th17 cells differentiate from naïve T cells 
under the influence of TGF-β and IL-6, and 
their maintenance and expansion are mediated 
primarily by IL-23. Without IL-23, activated 
CD4+ T cells in the presence of IL-6 plus TGF-β 
can produce high amounts of IL-17 but unable 
to fully develop into pathogenic Th17 cells and 
acquire bystander regulatory properties mediated 
by IL-10 production.30 
	 Hence, in order for pathogenic Th17 cells to 
fully differentiate and exhibit effector functions, 
IL-23 is essential. In inflammation pathology, 
both IL-23 and IL-17 play vital roles where 
they correspond to the IL-23/IL-17 axis through 
the differentiation and activation of Th17 cells 
driving chronic inflammation and autoimmunity, 
leading to the onset of autoimmune diseases.8

IL-23/IL-17 axis in RA
RA is a chronic, systemic autoimmune disease 

that usually begins in small joints of the hands and 
feet, causing stiffness, pain, swelling, and reduces 
mobility and flexibility of the affected joints.25 
RA is characterised by the overproduction of 
autoantibodies leading to cartilage and bone 
destruction, negatively impacting RA patients’ 
ability to perform daily living activities.31

	 Growing evidence has demonstrated 
the importance of IL-23/IL-17 axis in RA 
pathogenesis14 involving synoviocytes, 
osteoclasts and immune cells regulated by 
cytokines and signaling molecules25 Both IL-17 
and IL-23 were absent in healthy joints, whereas 
their elevated levels were found in the serum and 
synovial fluid of RA patients32,33, corresponding 
to the IL-23/IL-17 axis in the pathogenesis of 
RA. 
	 Pathogenesis of RA is composed of two 
phases i.e. the priming phase involving the 
IL-23/IL-17 axis, and the effector phase 
involving bone and cartilage degradation.34 In 
the priming phase, IL-23 induces Th17 cells 
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to produce IL-17 and IL-6. IL-17 stimulates 
production of inflammatory mediators such 
as TNF-α produced by macrophages. This 
subsequently upregulates RANKL expression 
in monocytes involved in regulating osteoclasts 
activation that act as the key factor for cartilage 
destruction and bone erosion.33,35 Osteoclasts are 
multinucleated bone cells which play a role in 
bone resorption and they are activated by IL-
17 and B cells via RANKL and autoantibodies 
production such as anti-citrullinated peptide 
antibodies (ACPAs).36  In synovial fibroblasts of 
RA patients, IL-17 stimulates IL-23p19 mRNA 
and protein expression, and the synergistic 
actions of TNF-α and IL-17 stimulate the 
expression of IL-23p19 mRNA in fibroblast-
like synoviocytes.33,37 Through IL-6, naïve 
T cells differentiate into Th17 cells and Th2 
cells, the latter are activated by IL-4.38 Th2 and 
Th17 cells subsequently promote activation of 
B cells to produce autoantibodies including 
rheumatoid factor (RF) and ACPAs.34,36 The 
autoantibodies lead to osteoclasts activation that 
cause inflammation and bone erosion. In synovial 
fluid, resident neutrophils generate two major 
cytotoxic mediators i.e. proteases and reactive 
oxygens (ROs) further causing bone and cartilage 
degradation33 (Figure 1).
	 The significant role of IL-17 in RA is 
highlighted in a study by Genovese et al., 2010, 

where they indicate the success of clinical trial 
of Ixekizumab (LY2439821), the neutralizing 
antibodies specific for IL-1740 where IL-17 
blocking during the reactivation of antigen-
induced arthritis reduces bone erosion, joint 
swelling and inflammation.25 In animal models, 
IL-17 contributes to arthritis pathogenesis and in 
collagen-induced arthritis and that IL-23/IL-17 
axis is critical to the development of autoimmune 
arthritis including RA.14 

IL-23/IL-17 axis in SLE
SLE is a systemic autoimmune disease of 
unknown aetiology in which the body’s 
immune system becomes overactive and 
attacks healthy tissue through autoantibodies, 
resulting irreversible organ damage as a 
primary outcome.41 The disease is characterised 
by polyclonal B cell activation and resultant 
autoimmunity with numerous cytokines and 
immunoglobulins production that can serve as 
biomarkers and predictors of disease activity.42,43

	 The IL-23/IL-17 axis contributes to the 
pathogenesis of SLE. In lupus-prone mice, 
it was shown that IL-23 receptor deficiency 
lowered IL-17 production, and more importantly 
these mice were protected from the disease 
onset.44 High serum levels of IL-17 have 
been demonstrated in SLE patients and 
associated with higher SLE disease activity 

FIG. 1:	 IL-23/IL-17 axis in RA pathogenesis. CD4+ naïve T cells upon stimulation with IL-6 and TGF-β 
differentiate into Th17. Subsequently, IL-23 induces Th17 expansion that in turn stimulates the production 
of IL-17. The IL-23/IL-17 axis promotes TNF-α production and RANKL expression, leading to 
osteoclastogenesis and subsequent cartilage degradation and bone erosion in RA patients. Other pathways 
contributing to the bone erosion and inflammation involve autoantibodies (autoAbs) including RF and 
ACPAs production by plasma cells, as well as neutrophils stimulated by pro-inflammatory cytokines to 
release proteases and reactive oxygen species (ROS). Sources: [33, 34, 39]
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index (SLEDAI) score and it was elevated 
in SLE patients compared to controls.15,45,46

Increased levels of IL-17 in the serum and 
increased numbers of IL-17-producing cells 
were demonstrated in SLE patients.47 Moreover, 
increased levels of IL-17 in childhood-onset SLE 
(cSLE) were demonstrated in a study where 67 
consecutive cSLE patients compared with 55 
healthy controls.48  In addition, higher IL-17 level 
was found in target organs such as skin, lungs, 
and kidneys, indicating a role of IL-17 in local 
tissue damage of SLE patients.47   
	 IL-23/IL-17 axis is involved in the 
pathogenesis in SLE where activated DCs 
produce inflammatory cytokines IL-6 and IL-
23, stimulating Th17 cells to produce IL-17.49 
In addition, as IL-17 and IL-23 has a major role 
in both onset and progression of lupus nephritis 
(LN) pathology, Dedong et al., (2019) deduce 
that IL-17 involved in the LN inflammatory 
process and IL-23 is suggested to be a non-
invasive method in assessing the aggravation 
of LN patients. The findings of this analysis 
explicitly showed that IL-23/IL-17 axis plays 
a crucial role in the LN pathogenesis and both 
cytokines may be useful as biomarkers for 
renal disease development50 as IL-17 has been 
observed in LN glomeruli patients and IL-17 
producing cells are found in the kidney tissue of 
LN patients.51 Interestingly, IL-23/IL-17 seems 
to be active in renal activity, however further 
investigations need to be conducted to enhance 
our interpretation of the IL-23/IL-17 axis. 
	 High levels of INF-α produced by plasmacytoid 
dendritic cells (pDCs) promote the activation of 
antigen presenting cells (monocytes, mDCs, B 
cells) that also activate Th17 cells to produce 
IL-17.52 Activated monocyte induces the 
production of IL-17 by group 3 ILC cells, yδ 
T cells, and mast cells, as well as producing 
IL-6 and IL-23 which also trigger activation 
of Th17 cells.49 Furthermore, autoantibodies 
production by activated B cells lead to activation 
of dendritic cells (DCs) to secrete IL-23, which 
also contributes to enhanced production of IL-
17.52 IL-17 induces inflammatory cytokines, 
RANKL, MMPs, and chemokines, resulting in 
the recruitment of neutrophils to mediate tissue 
inflammation and damage in SLE. As B cells 
play central roles in pathogenesis of SLE53, 
upregulation of B lymphocyte stimulator (BLyS) 
in B cells is involved in SLE development.52,54

BLyS acts as a survival factor for B cells as it 
inhibits B cells apoptosis, stimulates B cells 
proliferation and differentiation through the 

interaction with IL-17, and ultimately increases 
autoantibodies production.52,54 The expansion 
of Th17 cells is also promoted by BLyS52

(Figure 2). 

Therapeutic Antibodies Targeting IL-23

Ustekinumab 
Ustekinumab is a fully humanised IgG1 
monoclonal antibody that binds to the p40 subunit 
to inhibit both IL-12 and IL-23, preventing them 
from binding to their receptors on the surface of 
immune cells.55 The antibody interferes with the 
activities of Th1 and Th17 pathways  and also 
keratinocyte activation.30 Ustekinumab has been 
approved for the treatment of moderate to severe 
plaque psoriasis by the European Medicine 
Agency and US Food and Drug Administration 
(FDA).56,57

Ustekinumab in SLE
In terms of SLE, the safety and efficacy of 
ustekinumab in patients with active SLE were 
evaluated in a phase II study.58 Placebo-controlled 
trial on seropositive (ANA, dsDNA, and/or anti-
Smith antibodies) SLE patients was conducted 
and the patients had active disease (SLEDAI 
score ≥6, ≥1 BILAG A and/or ≥2 BILAG B 
scores) despite standard of care therapy. The 
patients (n=102) were randomised (3:2) to 
receive intravenous ustekinumab (~6 mg/kg) or 
placebo followed by subcutaneous injections of 
ustekinumab (90 mg) or placebo. Ustekinumab 
conferred significantly better efficacy compared 
with placebo where 60% of the patients receiving 
ustekinumab displayed an SLE response 
index (SRI) vs 31% in the placebo patients 
(p=0.0046), and the risk of a new British Isles 
Lupus Assessment Group (BILAG) flare was 
significantly lower in the ustekinumab vs placebo 
group (p=0.0078). Furthermore, the ustekinumab 
group demonstrated improved musculoskeletal 
and mucocutaneous disease features as well as 
improvements in anti-dsDNA and C3 levels.58 
	 In terms of case reports, Meenakshi et 
al., (2017) showed that a patient with active 
psoriasis, PsA and SLE responded well to 
ustekinumab, and suggested that Th-17/IL-23 
pathway as a therapeutic target in cutaneous 
(non-SLE) and SLE treatments.59 In another 
case report, a 58-year-old woman with subacute 
cutaneous lupus erythematosus (SCLE) who was 
not responsive to standard treatments showed 
marked improvement after a single injection 
of ustekinumab, and remained in remission for 
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seven months with continuous ustekinumab 
without side effects or adverse events.60

Ustekinumab and guselkumab in RA
A randomised phase II study was conducted to 
evaluate the efficacy and safety of subcutaneously 
administered ustekinumab and guselkumab (anti-
IL-23 antibody) in active RA patients who were 
previously treated with methotrexate (MTX). 
Patients were randomly assigned to receive 
placebo (n=55), ustekinumab (90 mg; n=55), 
guselkumab (50 mg; n=55) and guselkumab 
(200 mg; n=54) every 4 weeks.61 However, not 
all patients who enrolled completed the study 
due to lack of efficacy, adverse events (AEs), 
death and withdrawal of consent. By week 28, 22 
patients (10%) discontinued in the study, while 
the remaining patients continued a stable dose 
of MTX (10-25 mg/week) where the primary 

endpoint showed at least 20% improvement 
in American College of Rheumatology criteria 
(ACR20), and safety of the therapies was 
monitored. However, no significant reduction in 
signs and symptoms of RA patients treated with 
ustekinumab or guselkumab where the primary 
endpoint (ACR20 at week 28) was not met for 
both antibodies.61 

Therapeutic Antibodies Targeting IL-17

Brodalumab in and RA
Brodalumab (AMG 827) is a humanised, anti-
IL-17RA monoclonal antibody where it binds 
and blocks the activities of interleukins 17A, 
17F, 17A/F heterodimer, and 17E (IL-25).62 In 
the phase Ib, multicenter, randomised, double-
blind, placebo-controlled, multiple ascending 
dose study (NCT00771030), RA patients (n=40) 

FIG. 2:	 IL-23/IL-17 axis in SLE pathogenesis. Activated DCs synthesise inflammatory cytokines IL-6 and 
IL-23, and promote the differentiation and expression of Th17 cells. BLyS expressed by B cells, mono-
cytes, activated DCs, and neutrophils stimulate B cell differentiation and survival. BLyS also promotes 
Th17 cells expansion. pDC promotes the activation of monocytes, mDC, and B cell contributing to the 
induction of IL-23/IL-17 axis, which subsequently upregulates inflammatory cytokines (ICs), RANKL, 
MMPs, and chemokines. These result in the recruitment of neutrophils that trigger tissue inflammation 
and damage. Sources: [52-54]
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from 11 sites (7 in the United States, 2 in Canada 
and 2 in Mexico) were recruited. Patients were 
randomised 3:1 to receive brodalumab (50, 140, 
or 210 mg subcutaneously every 2 weeks for 6 
doses per group; or 420 or 700 mg intravenous 
infusion every 4 weeks for 2 doses per group) 
or placebo. Multiple doses of subcutaneous and 
intravenous brodalumab were tolerated by active 
RA patients, however, there was no evidence 
of positive clinical response in the brodalumab 
group compared to placebo.63

	 A phase II study was done for RA patients who 
have inadequate response on MTX (n=252) to 
evaluate the efficacy and safety of brodalumab, 
an IL-17R antibody inhibitor in RA patients. 
Patients were randomised to receive brodalumab 
through subcutaneous injections (70 mg, 140 
mg, or 210 mg) or placebo. It is reported that 
there were no significant effects of treatment 
throughout the study while one death of patient 
was reported approximately 1 week after the 
last dose of brodalumab in 140 mg group due 
to cardiopulmonary failure. Thus, the study does 
not find meaningful evidence of clinical efficacy 
with treatment of brodalumab in patients with 
inadequate response to MTX.64

Secukinumab in RA
Secukinumab (AIN457) is an IgG1k, fully 
human monoclonal antibody that targets IL-
17A and blocks its interaction with the receptor, 
IL-17R.65 A phase II, double-blind, randomised 
and placebo-controlled study66 was conducted to 
evaluate the one-year efficacy and safety profile 
of secukinumab in RA patients (n=237). RA 
patients on MTX and responded to DMARD 
or other biologics were randomised (1:1:1:1) 
to receive monthly subcutaneous injections of 
secukinumab or placebo for 48 weeks (25, 75, 
150, 300 mg). A total of 174 patients (73.4%) 
completed the study and the authors reported 
that active RA patients who failed to respond 
to DMARD and other biologics showed an 
improvement after treatment with 150 mg of 
secukinumab as indicated by improvements in 
ACR responses and Disease Activity Score in 28 
joints (DAS28) scores over time up to a year, as 
well as reduction in CRP levels, improvement 
in DAS28 using the C-reactive protein level 
(DAS28-CRP) <2.6 rates, and HAQ-DI scores 
(Table 3).
	 Another phase II study was conducted to 
evaluate the efficacy and safety of secukinumab, 
administered with an intravenous or subcutaneous 
loading regimen versus placebo, in patients with 

active RA (n=221).67 RA patients on MTX 
were randomised to receive the following: (i) 
secukinumab intravenous loading 10 mg at 
baseline on weeks 2 and 4, then subcutaneous 
150 mg every 4 weeks (n = 88); (ii) secukinumab 
subcutaneous loading 150 mg once weekly for 
5 weeks, then every 4 weeks (n = 89); (iii) 
matching placebo followed by secukinumab 
150 mg every 4 weeks starting in week 16; n 
= 44). The authors reported that the results did 
not meet the primary efficacy endpoint (ACR20 
response) at week 12 for secukinumab compared 
with placebo (p=0.3559), but secukinumab 
demonstrated improved efficacy in reducing 
disease activity over placebo as measured by 
DAS28 and other secondary endpoints.
	 To evaluate the efficacy and safety of 
secukinumab in patients with active RA patients 
(n=551) who had an inadequate response to or 
intolerance of tumour necrosis factor (TNF) 
inhibitors, a phase III study (NURTURE 1) 
was conducted.68 A total of 551 patients were 
randomised (1:1:1:1) to receive intravenous 
secukinumab at a dose of 10 mg/kg (at baseline 
and weeks 2 and 4) followed by subcutaneous 
secukinumab at a dose of either 150 mg or 75 
mg every 4 weeks or, alternatively, abatacept 
or placebo on the same dosing schedule. The 
primary endpoint was the proportion of patients 
achieving 20% improvement in disease activity 
according to ACR20 at week 24 in patients 
receiving 150 mg secukinumab was significantly 
higher compared with placebo. The ACR20 
response rates at week 24 were 30.7% in patients 
receiving 150 mg secukinumab (p = 0.0305), 
28.3% in those receiving 75 mg secukinumab 
(p=0.0916), and 42.8% in those receiving 
abatacept, compared with 18.1% in the placebo 
group. A significant reduction in the DAS28-
CRP was seen in patients treated with 150 mg 
secukinumab (p=0.0495), but not in patients 
treated with 75 mg secukinumab. The authors 
concluded that secukinumab at 150 mg resulted 
in improvement in signs and symptoms with 
reduced disease activity in patients with active 
RA who had an inadequate response to TNF 
inhibitors. 
	 Another phase lll study was conducted by 
Dokoupilova et al., (2018) to assess the efficacy 
and safety of secukinumab in patients with RA 
who failed to respond to TNF-α inhibitors. A total 
of 242 RA patients were randomised (1:1:1) to 
subcutaneous secukinumab 150 mg, 75 mg or 
placebo at baseline (weeks 1, 2, 3, 4 and every 
4 weeks), where ACR20 response at week 24 
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was the primary endpoint, meanwhile secondary 
outcomes included DAS28-CRP, HAQ-DI, and 
ACR50 at week 24. ACR20 response rates at 
week 24 for both secukinumab 150mg and 75 
mg were not statistically significant to placebo 
respectively, and the secondary endpoints were 
not met for both doses. The authors concluded 
that, inhibition of IL-17A with secukinumab 
did not provide benefits or advantages to RA 
patients.69

	 Burmester et al., (2016) conducted a phase 
II study to assess the association of HLA-DRB1 
alleles with the clinical responses to secukinumab 
in active RA patients. 100 of biologic-naïve RA 
patients were randomised 2:1 to secukinumab 
10 mg/kg i.v. or placebo every 2 weeks until 
week 10. As a result, secukinumab was reported 
as significantly more effective than placebo, 
reducing DAS28-CRP and producing ACR20 
responses, however, there was no significant 
relation between HLA-DRB1*04 allelic group 
and response of secukinumab vs placebo. 
Secukinumab was concluded that the signs and 
symptoms of RA were significantly reduced 
when compared with placebo.70

	 In addition, another phase III study were 
reported by Tahir et al., (2017) and Huang et 
al., (2019) recruiting active RA patients who 
have an inadequate response to anti-TNFα 
(n=637). The patients were randomised 1:1:1 
to receive intravenous secukinumab 10 mg/kg 
during baseline, week 2 and week 4, followed 
by subcutaneous secukinumab 150 mg or 75 mg. 
Secukinumab demonstrated efficacy in reducing 
disease activity over placebo as measured by 
ACR20 in active RA patients, promising a 
safety profile similar to other biologics currently 
approved for RA treatment.71 Meanwhile, as 
secukinumab 150 mg showed significantly 
better clinical efficacy with no increased risk of 
AEs and serious AEs compared with placebo as 
reported by Huang et al., (2019), it is concluded 
that secukinumab may be the best therapeutic 
option for treatment if RA.72

Ixekizumab in RA
Ixekizumab (LY2439821) is a recombinant, 
high-affinity and humanised IgG4 monoclonal 
antibody that targets IL-17.73 In early 2016, it has 
been approved by European Medicines Agency 
(EMA) and U.S. Food and Drug Administration 
(FDA) for the treatment of psoriasis.74 
	 A randomised, double-blind study was 
conducted to evaluate ixekizumab in two 
populations of RA patients: biologics-naïve 

patients (n=260) and patients with an inadequate 
response to TNF inhibitors (n=188)75 conducted 
a randomised, double-blind study, to evaluate 
ixekizumab in 2 populations of RA patients: 
biologics-naïve patients (n=260) and patients 
with an inadequate response to TNF inhibitors 
(n=188). Placebo or ixekizumab was administered 
subcutaneously at weeks 0, 1, 2, 4, 6, 8, and 
10 with concomitant DMARDs. Significant 
dose-response relationship was observed as 
measured by ACR20 response rates at week 
12 in biologics-naïve patients (p=0.031). For 
patients with an inadequate response to TNF 
inhibitors, ACR20 responses at week 12 were 
significantly better with ixekizumab than placebo 
(p<0.05). Decreases in the DAS28-CRP, Clinical 
Disease Activity Index (CDAI), and CRP level 
from baseline were observed at week 12 in 
the ixekizumab groups in both populations 
(p<0.05 vs placebo). The authors concluded that 
ixekizumab improved the signs and symptoms of 
RA patients who were either naïve to biologics 
treatment or had an inadequate response to TNF 
inhibitors. 
	 This study was continued by another phase 
II study for safety and effectiveness in both 
biologic-naïve and TNF-inadequate responder 
(TNF-IR) of RA patients through 64 weeks.76 

Patients who completed the 16-week double-
blind period of a phase II study were eligible 
to enter the open-label extension (OLE) for an 
additional 48 weeks of ixekizumab treatment. 
After a treatment between weeks 10 to 16, 
biologic-naïve patients (n=232) and TNF-IR 
patients (n=158) entered the OLE with all patients 
receiving 160 mg ixekizumab at weeks 16, 18, 
and 20, and then every 4 weeks through week 
64. The authors reported that 201 (87%) biologic-
naïve and 99 (62%) TNF-IR patients completed 
the OLE and adverse events (AE) occurred in 168 
(72%) biologic-naïve and in 115 (73%) TNF-IR 
patients during the OLE. Ixekizumab was well 
tolerated, and safety findings in the OLE were 
consistent overall with those in the double-blind 
period of this study. Clinical improvements 
observed with ixekizumab through week 16 were 
maintained or improved in patients participating 
in the OLE through week 64. Authors concluded 
that, Ixekizumab was well tolerated and shows 
consistent safety findings in OLE.

CONCLUSION

As IL-23/IL-17 axis is involved in the pathogenesis 
of autoimmune diseases, therapeutic antibodies 
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targeting IL-23 (ustekinumab, guselkumab 
and tildrakizumab) or IL-17 (brodalumab, 
secukinumab, and ixekizumab) have translated 
into clinical trials for these diseases. Our 
literature searches showed that an anti-IL-23 
therapeutic antibody, ustekinumab has been 
studied in SLE and RA with better efficacy and 
no significant differences, respectively, compared 
to placebo or control group. In particular, 
ustekinumab has been approved for treatment of 
psoriasis while phase II (NCT02349061)77 and 
phase III (NCT03517722)78,79 trials are ongoing 
to assess the safety and efficacy of ustekinumab 
in SLE patients. 
	 On the other hand, anti-IL17 antibodies 
(secukinumab and ixekizumab) have shown 
improved clinical benefits for RA patients in 
phase II/III studies. Studies involving anti-IL-17 
antibodies in SLE patients are lacking and thus 
recommended for future investigations. Finally, 
as the IL-23/IL-17 axis plays key roles in the 
pathogenesis of SLE and RA, and the successful 
clinical trials of anti-23 or anti-17 therapeutic 
antibodies in other autoimmune diseases, we 
suggest that dual antibodies targeting IL-23 and 
IL-17 represent a potential treatment option for 
SLE and RA.
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