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ABSTRACT

Objectives. Responding to the reality of neonate patients with delayed childhood development due to late diagnosis 
of and intervention on hearing impairment, this study aims to determine the features based on time-frequency 
domain of auditory brainstem response (ABR) signals and to test the protocol on ABR signals from PhysioNet.
 
Methods. This is done by pre-processing, performing time-frequency analysis, and characterizing hearing impairment 
using the dominant features of the ABR. In this study, normal (N) and hearing impaired (HI) ABR adult human signals 
were acquired from Physionet.org, a publicly available database. Considering its high signal-to-noise ratio, numerous 
filters and transformations were applied to extract the ABR. Consequently, the features acquired — dominant 
frequency and bigrams, were used as data classifiers.

Results. Initial results using only N classifiers, that is features from the Normal dataset, and bandpass Chebyshev 
filter with a lower cut-off frequency of 60 Hz show that the tests yielded low to middle sensitivity. Further tests were 
done to improve the sensitivity that incorporated the HI classifiers, used data filtered with a low cut-off frequency of 
300 Hz, and data divided per stimulus intensity level.

Conclusion. Conclusions made are 1) data with both N and HI classifiers have higher sensitivity than those using only 
N classifiers, 2) data with a Chebyshev cut-off frequency of 300 Hz have a higher sensitivity than those with 60 Hz, 
and 3) data divided per intensity level have a higher sensitivity than data analyzed as a whole, and that features 
with stimulus intensity in middle ranges have a better distinction between HI and N patients.
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INTRODUCTION

Early detection of hearing loss is crucial for mental 
and social development of the child. This is primarily 
addressed by Republic Act (RA) 9709 known as “Universal 
Newborn Hearing Screening and Intervention Act” which 
establishes a universal newborn hearing screening program 
for the Prevention, Early Diagnosis and Intervention of 
Hearing Loss.1 

RA 9709 mandates all newborns in the Philippines to 
go through hearing screening prior to hospital discharge 
or within three months after birth for those born outside 
hospitals. Prior to discharge, the baby’s hearing is tested by 
either otoacoustic emission (OAE) or automated auditory 
brainstem response (AABR). Depending on the screening 
modality used, this may be a one-step test (AABR) or a 
two-step test with a re-screening session.2
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Since the implementation of the Universal Newborn 
Hearing Screening and Intervention Program, only an 
estimated 10% of the hearing-impaired Filipino babies 
are being screened. This is due to the high cost and lack 
of availability of hearing screening devices.1 One of the 
current solutions is the Hearing for Life (HeLe) project, a 
collaborative project between the University of California, 
Davis, the University of California, Berkeley, and the 
University of the Philippines that aims to develop a low-
cost telehealth device that will enable local health units to 
implement newborn hearing screening. HeLe, an Auditory 
Brainstem Response (ABR) machine for neonates is currently 
being locally designed and fabricated. In conjunction with 
the hardware, a software algorithm is being developed and 
tested so that the entire system would have the capability 
of detecting automatically whether the subject is normal or 
hearing-impaired. Furthermore, the algorithm should be 
able to display the results immediately after the test. 

For the past two decades, there has been a limited number 
of ABR research. Traditionally, most Automated Auditory 
Brainstem Response (AABR) machines rely on time domain 
analysis of the ABR signals. Current methods of detecting 
hearing impairments measure the latency of Wave V as a 
function of auditory stimulus. The latency is then measured 
against a standard model.3,4 If the latency falls within the 
normal range, then the patient is tagged by the machine as 
normal hearing and the result of the test would be a PASS. 
However, if the latency falls outside of the normal range of 
the standard model, then the patient is tagged as hearing-
impaired and the result of the test would be a FAIL. In this 
study, the researchers will try to develop a different algorithm 
based on the frequencies present in the ABR signals. 

The study was done in collaboration with Philippine 
National Ear Institute (PNEI). Clinicians from PNEI 
were also consulted with regards methodology such as 
how individual sweeps for one stimulus are processed and 
analyzed. The researchers aim to analyze and determine what 
are the distinguishing features present in the ABR signals 
of normal hearing patients (N) and those with hearing 
impairments (HI). Once the distinguishing features have 
been obtained, further testing could be done to determine if 
these features could be used to automatically give a PASS 
(normal hearing) or a REFER (hearing-impaired) result 
immediately after the test. Unlike previous ABR algorithms, 
which focus on detection of specific features such as Wave 
V, the analysis of the entire short-latency auditory-evoked 
response waveform will be performed to identify any feature 
that may distinguish a waveform as “PASS” or “REFER”.

MeTHODS

Data
Using the ABR dataset from PhysioNet, an MIT 

database, the authors employed methods to analyze the ABR 
signals using the frequency components present in these 

signals and determine what are the unique frequencies in the 
normal and hearing-impaired subjects. The Evoked Auditory 
Responses in Normal and Hearing-impaired databases were 
both sampled at 48 kHz.5 As of 2021, only the PhysioNet 
data were publicly available. The data from PhysioNet were 
validated and used in submissions in peer reviewed journals.6,7 
There are two separate databases in PhysioNet, a Normal 
Database and Hearing-impaired Database.6,7 As shown in 
Figure 1, the data used in this study consists of eight normal 
and seven hearing-impaired adult subjects. There are a total 
of eight hearing-impaired adult subjects in the PhysioNet 
database but one was excluded because it used a different 
stimulus frequency. For the hearing-impaired, they were 
confirmed with clinical tests. The patients were tested using 
different audio stimulus intensities: 10-55, 60, 65, 70, 75, 
80, 85, 90, 95, and 100 dB. 

Each subject would have a number of files per stimulus 
intensity. This can be seen in Tables 4 and 5. For example, 
at an intensity level of less than 60 dB, there would be 23 
hearing-impaired files and 98 normal hearing files. Overall, 
there were 224 files from normal subjects and 204 files for 
hearing impaired. For this study, the files were considered 
independent of each other. Each file contains about 989 
sweeps which are then averaged and analyzed as a single ABR 
signal. That is at each time point, the arithmetic mean of 989 
data points is obtained. Each sweep is initiated by an audio 
signal of 4-kHz tones with a duration of 1 ms. These are then 
padded with silence to get a total stimulus length of 41.7 ms.

Preprocessing
Processing and analysis of the raw data from Physionet.

org were done using Matlab (Mathworks, Inc., MATLAB). 
Prior to analyzing the ABR signal, different processing 
techniques were employed to determine which one would 
perform best in removing significant noise or unwanted 
signals from the ABR signals. The noise present was due to 
electromagnetic interference (60 Hz) as well as the native 
EEG signals. Two cut-off frequencies were used, 60 Hz and 
300 Hz. It was determined that the best cut-off frequency 
for the filters which yielded higher sensitivity is 300 Hz. 

All sets of ABR signals will first undergo pre-processing 
to remove noise and eliminate unwanted frequencies thus 
isolating the signals needed. To further specify and explain 
this step, Figure 2 is shown below. The first step is to obtain 

Figure 1. ABR Dataset from PhysioNet.
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the ABR data. Next, 900-1000 sweeps of the ABR signal 
are averaged. Third, the audio signal is removed so that the 
response waves may be isolated. Next, a moving average filter 
is applied which is essentially a low-pass filter to remove 
the high frequency noise. A high-pass filter with a cut-off 
frequency of 1 Hz is then applied to remove the DC offset 
or to center the ABR signal along the x-axis (time). Finally, 
a Chebyshev bandpass filter is applied to isolate the relevant 
ABR frequencies. There were several filters tested, Chebyshev, 
Bessel, and Butterworth filters. However, Chebyshev was 
used as this was the filter that gave a result closest to the 
“textbook” ABR signal in appearance.

The study used two types of bandpass filters, one with a 
cut off of 60 Hz to 1500 Hz and another with a cut off of 300 
Hz to 1500 Hz. The frequency spectra of each of the steps are 
plotted for verification. Figure 3 shows the raw, unprocessed 
ABR data for 42 ms. The spikes aside from immediately after 
the stimulus cannot be differentiated because of the various 
noise present. On the other hand, a post-processed ABR 

signal from a hearing-impaired subject and the corresponding 
spectrum after the high pass filter is shown in Figure 4.

Frequency Analysis
To be able to analyze the frequency, the ABR signal’s 

frequency spectrum was retrieved using the Short-Time 
Fourier Transform (STFT). One sweep would correspond 
to 2002 datapoints. For 989 sweeps per file, there would 
be around 2 million datapoints. The averaged ABR signal 
would be divided into 39 segments. The segmented 2002 
points will have 100 points (2ms) window size with 50% (50 
points) overlap. However, only the first 10ms (9 segments) 
was analyzed since this already contains waves I-V of the 
ABR signal as shown in Figure 6. The top three dominant 
frequencies per segment are obtained. To obtain the dominant 
frequencies, a threshold was set so only those frequencies 
with sufficient power relevant to the analysis would be used. 
Frequencies outside the threshold would be disregarded. 

To determine the frequency components that are 
present in the ABR signals, the frequency resolution was 
determined as 480 Hz which is computed accordingly: 

where, Fs is the sampling frequency (48 kHz) and Nd is 
the number of datapoints. The STFT in Matlab would show 
which frequency components are present in each segment. 
The dominant frequencies per segment were obtained and 
formed a frequency set. The top 20% of the frequency sets, 

Figure 2. Preprocessing of ABR Data.

Figure 3. Raw ABR signal of normal hearing subject for 42 ms.
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Figure 4. Filtered ABR signal of hearing-impaired subject and 
its corresponding frequency spectrum in Hz.

Frequency resolution = Fs/Nd  (1)
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following the Pareto principle, for both normal and hearing-
impaired were obtained. The frequency sets can be visualized 
using the spectrogram shown in Figures 5 and 6. From both 
figures, most of the high-power frequencies for N and HI 
subjects were at frequencies below 2.4 kHz.

The bigram method is then used wherein it analyzes the 
frequency sets or the dominant frequencies from one time 
segment to the next and is considered a feature.8 Figures 
7 and 8 illustrate the bigram method. The bigram of the 

marked 10 ms box in Figure 7 is shown in Figure 8. In 
Figure 8, the left most numbers would be the frequencies 
used for each threshold. Thus, frequencies up to 480 would 
correspond to bin 1, frequencies up to 960 would be bin 2, 
and so on. For segment 1, the three frequency components 
with the highest contribution during that time duration 
would be 48, 96, and 1560 Hz. This would correspond to 
bins 1, 1, and 4, respectively. Similarly, the same is done for 
segments 2 to 5. Each unique set of frequencies would then 
be assigned a symbol, in this case, the frequencies 48, 96, 
and 1560 Hz would be assigned the symbol A and so on. 
A bigram would be a pair of symbols, so 48-96-1560 Hz 
followed by 240-876-1240 Hz would have the bigram AB. 
Thus, the formed bigrams for Figure 8 would be as follows, 
AB, BC, CD and DC. The bigrams would be tested for 
uniqueness and checked for occurrence among the files. The 
top 20% unique bigrams, again using the Pareto principle 
would be used as classifiers for the files. However, the 
sensitivity and specificity is increased if bigrams from both 
normal and hearing-impaired are used, that is the bigrams 
with the highest difference of occurrence between N and HI 
are used as classifiers as shown in Figure 9.

Figure 5. Spectrogram of averaged ABR signal (80dB) of 
hearing-impaired subject.

Figure 7. STFT Data.

Figure 6. Spectrogram of averaged ABR signal (80dB) of 
normal hearing subject.

Figure 8. Sample of Bigrams.
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ReSUlTS

In analyzing the data, the frequency sets and bigram 
method were used. Instead of analyzing the frequency 
components of an ensemble ABR signal, the frequency sets 
of each time segment were obtained. There were 36 unique 
frequency sets for the N and HI ABR. However, only 11 
frequency sets were obtained by getting those with highest 
difference in occurrence between N and HI as shown in 
Figure 9. This procedure was replicated for the bigram test. 
Figure 9 (bottom pane) shows the multiple top bigrams 
with highest difference in occurrence between N and HI. 
A total of 377 unique bigrams were extracted from the 
dataset and Figure 9 which showed eighty-two (82) were 
used as classifiers.

Five iterations of the Bigram test were performed 
depending on whether either or both Normal (N) or 
Hearing-Impaired (HI) classifiers were used, whether or 
not the bigrams were analyzed per intensity level, and the 
lower cutoff frequency set for the filter. The results from these 
iterations are discussed throughout the section. 

Table 1 shows the sensitivity (SN) and specificity (SP) 
using 224 files from normal subjects and 204 files for hearing-
impaired. They were obtained from the test conducted with 
only N classifiers and using a filter with a lower cutoff 
frequency of 60 Hz. Table 2, on the other hand, shows the 
SN and SP when both N and HI classifiers were used. It can 
be observed from the values in the two tables that the second 
iteration yielded results that are considerably better than 
the first, which means that using both N and HI classifiers 
achieves better performance than using only N classifiers.

The third iteration also uses both N and HI features 
since it was previously determined that doing so yields better 
performance rates than using only N classifiers. Unlike in the 
first two, however, the lower cutoff frequency of the filter in 
this iteration is set to 300 Hz. The results from this test are 
shown in Table 3. Comparing the values in Tables 2 and 3, 
it can be seen that the filter allows for significantly better 
sensitivity and slightly improved specificity if the lower 
cutoff frequency is set to 300 Hz instead of 60 Hz.

In the fourth and fifth iterations, the unique bigrams 
for N and HI signals were then classified and analyzed per 
intensity level. A lower cutoff frequency of 60 Hz was set 
for the filter in the fourth iteration, the results of which are 
shown in Table 4. From the table, true positive rates ranging 
from 60.87 to as high as 100% were achieved. As for the fifth 
and final iteration, with a cut-off frequency of 300 Hz, the 
bigram features were able to distinguish HI from 83.33 to 
100% of the time based on the values presented in Table 5.

DISCUSSION

The bigram test, an algorithm used in a previous study to 
classify electrocardiogram signals with normal sinus rhythm 
and those with atrial fibrillation was also used in this study 
to classify whether a signal was from a normal or hearing-
impaired subject.8 The bigram method involves pairing up 
frequency sets of ABR signals from both N and HI patients 
to produce even more distinct features that may be used to 
classify the ABR signals. In this study, five iterations of the 

Figure 9. Frequency sets (A) and Bigrams (B) with highest difference in occurrence between N and HI (frequency is in Hz).

A B

Table 2. Bigram Analysis Results using both Normal and 
Hearing-impaired Classifiers (Lower Cutoff – 60 Hz)

Attribute Percent
Specificity 87.50 (95% CI: 82.44 - 91.53)
Sensitivity 79.31 (95% CI: 73.21 - 84.74)

Table 3. Bigram Analysis Results using both Normal and 
Hearing-impaired Classifiers (Lower Cutoff – 300 Hz)

Attribute Percent
Specificity 88.39 (95% CI: 83.46 - 92.28)
Sensitivity 96.55 (95% CI: 93.06 - 98.61)

Table 1. Bigram Test using only Normal Classifiers (Lower 
Cutoff – 60 Hz)

Attribute Percent
Specificity 85.27 (95% CI: 79.94 - 89.64) 
Sensitivity 59.61 (95% CI: 52.73 - 66.59) 
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bigram test were performed. A total of 82 bigrams were used 
for classifying the signals from the normal and hearing-
impaired subjects. However, this may have to be readjusted 
when a different hardware is used. Raw data from Physionet.
org indicates that the noise present is significant. Thus, care 
should be taken to pre-process the data. One iteration of the 
bigram test was performed on the different stimulus intensity 
shown on Tables 4 and 5. This was done to see if the stimulus 
intensity would affect the test. Eventually, this could be of 
benefit if the testing time could be reduced by using fewer 
stimulus intensities. 

Three factors that significantly improved the classification 
performance were identified. First, the overall accuracy was 
found to be higher when both N and HI classifiers were used 
than when only the N classifiers were considered. The results 
have shown a 20% true positive rate improvement. Second, 
using a Chebyshev filter with a cut-off frequency of 300 Hz 
demonstrated better rates than using one with a 60-Hz cut-
off. Analysis of the results revealed that the percentage of 
false negatives reduced from around 20% to 3%. Lastly, the 
results further improved when the data had been partitioned 
according to their intensity levels. Data divided per intensity 
level have more accuracy than data analyzed as a whole, and 
that middle level ranges have a better accuracy than at the 
extremes. All the true negatives have percentages of 90% and 
above. All intensities, except 60 Hz, have a false negative rate 
of less than 10%.

The raw data from PhysioNet were successfully processed 
to acquire the required ABR signal for analysis. Various signal 
processing techniques were properly implemented wherein 
the ABR signal to be analyzed resembles an ABR signal from 
that of a commercial device. Although the PhysioNet data 
can still be further processed as there are some parameters 
that can still be modified to produce new findings.

The entire procedure from the processing of data to the 
results of frequency analysis were executed in MATLAB. 
Instead of hours, the whole process was done in 8 - 30 
seconds. This test time proves vital to ease up the newborn 
hearing screening process. Though this time might still vary 
depending on the capabilities of the HeLe hardware. It is also 
recommended to use on a hardware with a higher sampling 
rate to enable finer distinction in the frequencies present in 
the ABR signals. 

Currently, the study is only limited with the usage of data 
from PhysioNet. For further trials, it would be best to test the 
algorithm using data of newborn subjects from commercial 
devices. Moreover, the number of sweeps of a certain data 
might be a factor in the analysis of frequency. Testing the 
current algorithm using a lower number of sweeps (600 or 
less) might result in new findings. Though it demands more 
time, another possibility is to test the algorithm for each 
sweep as there might be some features to consider. 

With the current study focused on newborn hearing 
screening, chances are that the frequency analysis algorithm 

Table 5. Bigram Analysis Results for Varied Stimulus Intensities using both Normal and Hearing-impaired 
Classifiers (Lower Cutoff – 300 Hz)

dB # HI files # N files Specificity Sensitivity
Lower 60 23 98 95.92 (95% CI: 89.88 - 98.88) 100.00 (95% CI: 85.18 - 100.00)

60 12 13 92.31 (95% CI: 63.97 - 99.81) 83.30 (95% CI: 51.59 - 97.91)
65 12 17 88.23 (95% CI: 63.56 - 98.54) 100.00 (95% CI: 73.54 - 100.00)
70 20 13 92.31 (95% CI: 63.97 - 99.81) 100.00 (95% CI: 83.16 - 100.00)
75 20 10 90.00 (95% CI: 55.50 - 99.75) 100.00 (95% CI: 83.16 - 100.00)
80 24 13 92.31 (95% CI: 63.97 - 99.81) 95.83 (95% CI: 78.88 - 99.89)
85 20 15 93.33 (95% CI: 68.05 - 99.83) 95.00 (95% CI: 75.13 - 99.87)
90 24 11 90.91 (95% CI: 58.72 - 99.77) 100.00 (95% CI: 85.75 - 100.00)
95 24 18 94.44 (95% CI: 72.71 - 99.86) 100.00 (95% CI: 85.75 - 100.00)

100 24 16 93.75 (95% CI: 69.77 - 99.84) 91.67 (95% CI: 73.00 - 98.97)

Table 4. Bigram Analysis Results for Varied Stimulus Intensities using both Normal and Hearing-impaired 
Classifiers (Lower Cutoff – 60 Hz)

dB # HI files # N files Specificity Sensitivity
Lower 60 23 98 66.32 (95% CI: 56.07 - 75.56) 60.87 (95% CI: 38.54 - 80.29)

60 12 13 92.31 (95% CI: 63.97 - 99.81) 100.00 (95% CI: 73.54 - 100.00)
65 12 17 94.12 (95% CI: 71.31 - 99.85) 91.67 (95% CI: 61.52 - 99.79)
70 20 13 92.31 (95% CI: 63.97- 99.81) 90.00 (95% CI: 68.30 - 98.77)
75 20 10 90.00 (95% CI: 55.50 - 99.75) 80.00 (95% CI: 56.34 - 94.27)
80 24 13 92.31 (95% CI: 63.97 - 99.81) 87.50 (95% CI: 67.64 - 97.34)
85 20 15 73.33 (95% CI: 44.90 - 92.21) 90.00 (95% CI: 68.30 - 98.77)
90 24 11 90.91 (95% CI: 58.72 - 99.77) 83.33 (95% CI: 62.62 - 95.26)
95 24 18 94.44 (95% CI: 72.71 - 99.86) 83.33 (95% CI: 62.62 - 95.26)

100 24 16 93.75 (95% CI: 69.77 - 99.84) 95.83 (95% CI: 78.88 - 99.89)
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can also be explored for other auditory problems. Furthermore, 
since frequency is the center feature, the algorithm could be 
used to model and trace the changes in frequency along the 
auditory pathway. It would be interesting, for example, to see 
the frequency components present in the different waveforms 
(I to V), particularly Wave V, as this might give a clue on 
the conditions of the pathway. This is the recommendation as 
well of Paulraj, a closer look at Wave V as this is instrumental 
in classifying normal and hearing-impaired subjects.9 This 
will supplement studies based on the traveling wave delay of 
our auditory system.

CONClUSION

This study shows that there is merit in studying the 
frequency components of the ABR signal. It might lead to 
new ways of classifying normal or hearing-impaired subjects 
other than looking at the latencies of the different waveforms. 
By combining both time and frequency domain in the bigram 
method, new features can be extracted from the ABR signals.
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