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ABSTRACT

Background. Infection can be severely complicated by a dysregulated, whole-body inflammatory response known as 
sepsis. While previous research showed that genetic predisposition is linked to outcome differences, current patient 
characterization fails to determine which septic patients have greater tendencies to develop into severe sepsis or 
go into septic shock. As such, the identification of prognostic biomarkers may assist in identifying these high-risk 
patients and help improve the clinical management of the disease.
 
Objective. In this study, we aimed to identify molecular patterns involved in sepsis. We also aimed to identify essential 
genes associated with the disease’s survival which could serve as potential prognosticators for the disease.
 
Methods. We used weighted gene co-expression analysis (WGCNA) to analyze GSE63042, an RNA expression 
dataset from 129 patients with systemic inflammatory response syndrome or sepsis, including 78 sepsis survivors 
and 28 sepsis nonsurvivors. This analysis included identifying gene modules that differentiate sepsis survivors from 
nonsurvivors and qualitatively assessing differentially expressed genes. We then used STRING’s protein-protein 
interaction and gene ontology analysis to determine the functional and pathway relationships of the genes in the top 
modules. Lastly, we assessed the prognosticator abilities of the hub genes using ROC analysis.
 
Results. We found four diverse co-expression gene modules significantly associated with sepsis survival. Our 
differential gene expression analysis, combined with protein-protein interaction and gene ontology analysis, revealed 
that the hub genes of these modules – TAF10, SNAPIN, PSME2, PSMB9, JUNB, and CEBPD – may serve as candidate 
markers for sepsis prognosis. These markers were significantly downregulated in sepsis nonsurvivors compared with 
sepsis survivors.
 

Conclusion. Weighted gene co-expression analysis, 
gene ontology enrichment analysis, and protein-
protein network interaction analysis of transcriptomic 
data from sepsis survivors and nonsurvivors revealed 
TAF10, SNAPIN, PSME2, PSMB9, JUNB, and CEBPD 
as potential biomarkers for sepsis prognosis. These 
genes are associated with functions related to proper 
immune response, and their downregulation in sepsis 
nonsurvivors suggests eventual immune exhaustion in 
late sepsis. Further analyses, however, are necessary 
to validate their roles in sepsis progression and patient 
survival.
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INTRODUCTION

Sepsis is a life-threatening condition characterized by 
organ dysfunction resulting from a dysregulated host response 
to infection.1 This condition can progress into septic shock, 
a subset of sepsis with circulatory and cellular or metabolic 
dysfunction associated with increased mortality risk.2 Due 
to its high incidence and mortality rates, sepsis is a major 
public health concern.3,4 According to the World Health 
Organization, the number of sepsis cases reached more than 
40 million in 2017. In the same year, sepsis has affected 11 
million deaths globally, accounting for nearly 20% of deaths 
worldwide.5 The global incidence of septic shock was 22 to 240 
cases for every 100,000 sepsis patients.6 In the Philippines, 
the case fatality rate reached 30% for sepsis and up to 80% for 
septic shock among hospitalized patients and is considered 
one of the primary causes of patient mortality.7,8

In sepsis prevention and detection, using prognosti-
cators to identify patients genetically predisposed to septic 
shock may significantly improve the condition’s mortality 
rate. With accurate molecular prognosticators, it is possible 
to predict the survival of patients diagnosed with sepsis. This 
tool can be an invaluable adjunct to the current clinical and 
pathological parameters in identifying patients with higher 
mortality risk.9

Biomarkers associated with the magnitude of the 
inflammatory response, like IL-6 and CXCL10, were corre-
lated with sepsis patients’ clinical outcomes in population-
based studies.10,11 However, such biomarkers’ ability to predict 
outcome in an individual is limited, primarily due to the lack 
of specificity of the biomarkers and their similarity to the 
early inflammatory response.2 Moreover, such markers were 
observed using a parallel comparison between afflicted and 
non-afflicted, making it impossible to assess their prognostic 
value. Thus, there is a need to identify more specific and 
unique biomarkers to serve as reliable prognosticators for 
sepsis. Furthermore, a local investigation of candidate bio-
markers may provide insight into the differences in the types 
of molecules associated with sepsis between populations. 
The identified biomarkers may be helpful for clinical 
application in the local populations.

In this study, an mRNA expression dataset containing 
transcriptional data derived from 129 patients derived from 
a longitudinal study was analyzed for genes that may diffe-
rentiate sepsis patient survival and serve as prognosticators. 
Here, we present six candidate genes and elaborate on their 
relevance to immune response and sepsis survival.

METHODS
 

DataSet
The Gene Expression Omnibus (GEO) DataSets (http://

www.ncbi.nlm.nih.gov/geo/gds) of the National Center of 
Biotechnology Information (NCBI) was our database of 
choice for dataset searching. As shown in Figure 1, we used 

the term “((sepsis) AND ((survival) OR prognosticator))” as 
the search query, and organism: ”homo sapiens’’ and entry 
type: “DataSets’’ or “Series” as additional search filters. We 
then screened the resulting datasets based on suitability to the 
study objectives and sample size. Since we aimed to uncover 
potential prognosticators for sepsis survival, a dataset was 
deemed suitable if it contained the recommended number 
of samples (larger than 20) for both sepsis survivor and 
nonsurvivor groups.11

Ultimately, we used GSE63042 as our DataSet. 
GSE63042 contained 129 transcriptional data from peri-
pheral blood of patients with systemic inflammatory response 
syndrome (SIRS) or sepsis (infection with SIRS), indicating 
that 78 were sepsis survivors and 28 were sepsis nonsurvivors. 
There were also identifiers of disease severity, with 21 
sepsis patients classified as severe sepsis and 33 survivors 
with septic shock experience.

 
WGCNA Network Construction and Module 
Identification

Weighted Gene Network and Co-Expression Network 
Analysis (WGCNA) of R software (version 4.0.2) was used 
to perform gene expression analysis. First, sample cluster 
analysis was performed where obvious outliers were detected 
and eliminated. After outlier exclusion, re-clustering was 
done according to gene expression levels in each sample to 
uncover the correlation between samples.

For gene module detection, a soft-thresholding power of 
12 was used according to the rule of the scale-free network, 
and the minimum power value at the plateau was taken as 
the parameter of the subsequent analysis. A gene clustering 
tree was constructed based on the correlation of intergene 
expression levels. Afterwards, gene modules were detected 
using the dynamic tree cut function with the minimum 
number of genes in the module set to 30. Modules with 
similar expression patterns were merged according to the 

Figure 1. The search algorithm for the study dataset.

“Sepsis” AND (“survival” OR “prognosticator”) AND 
“Homo sapiens” [porgn:_txid9606]; limited to series 
and dataset; limited to n of interest at least 20 for 
both sepsis survivor and nonsurvivor groups (n=1)

“Sepsis” AND (“survival” OR “prognosticator”) AND 
“Homo sapiens” [porgn:_txid9606] (n=1,105)

“Sepsis” AND (“survival” OR “prognosticator”) 
AND “Homo sapiens” [porgn:_txid9606]; 

limited to series and datasets (n=51)

“Sepsis” AND (“survival” OR “prognosticator”) (n=1,244)
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similarity of the module eigenvalues. A sample expression 
pattern heat map was then drawn.

Dissimilarity of the topological overlap measure (TOM) 
was used to determine the degree of correlation between 
genes. Statistical significance among the modules and clinical 
traits was verified using the Pearson correlation test, and a 
p<0.05 was considered statistically significant. For this study, 
“sepsis alive vs. dead” was analyzed as the clinical trait of 
interest. The top four modules with the highest weighted 
correlation coefficient scores among all modules were chosen 
as modules of interest for further analysis. Gene significance 
and module membership were also calculated to relate the 
modules to the clinical trait.

Network and Enrichment Analysis
To determine associated functional ontogenies of 

the differentially expressed genes, network prediction 
and enrichment analysis were made using STRING 
(https://string-db.org/). “Multiple protein” option search 
was used to search for corresponding protein networks. 
Simultaneously, proteins within each module were inputted 
in the “List of Names” box with one protein per line. The 
specific organism for the query was set to humans (Homo 
sapiens). The analysis was done for the four top modules. The 
results were generated using medium confidence (0.400) 
setting for the minimum required interaction score with 
a maximum number of 10 for 1st shell node interactions.

Other Data Analytics
Continuous clinical data and gene expression levels to 

compare interest groups were analyzed using student t-tests. 
Categorical clinical data were compared using chi-square 
tests comparing two proportions. Mean with standard 
deviation were indicated, with differences determined at 
p<0.05. Receiver operator curves (ROC) were computed with 

a determination of areas under the curve (AUC) for selected 
candidate genes for prognostication.

Validation of Findings in an Independent Dataset
To evaluate the prognostic value of each candidate gene 

in an external dataset, we performed ROC curve analysis on 
an independent GEO dataset. GEO was searched, focusing 
on the same query as that of the primary dataset, which 
includes “((sepsis) AND ((survival) OR prognosticator))” as 
the search query, and organism: ”homo sapiens’’ and entry 
type: “DataSets’’ or “Series” as additional search filters. The 
inclusion criteria for the validation dataset were as follows: 
expression data is from peripheral blood samples of sepsis 
patients, includes gene expression profiles for all identified 
hub genes from the primary dataset, and has a sample size 
of ≥10 for each group. Based on these criteria, we identified 
GSE95233 as the appropriate validating dataset. GSE95233 
includes gene expression and survival data from 51 patients 
with septic shock - 34 survivors and 17 nonsurvivors.12

 
Ethical Considerations

The UP Manila Ethics Board (UPMREB) classified 
this study protocol as exempted from ethics review with code 
2021-488-EX.

 
RESULTS

Data set GSE63042, together with its clinical data, 
was downloaded from the GEO database from the NCBI 
website. The dataset includes 129 transcriptional data from 
peripheral blood of patients with systemic inflammatory 
response syndrome (SIRS) or sepsis (infection with SIRS), 
indicating that 78 were sepsis survivors and 28 were 
sepsis nonsurvivors. Aside from survival, the dataset also 
presented severe sepsis and shock data. However, these 

Table 1. Demographic and clinical features of the study population
Clinical variable SIRS (n=28) Sepsis survivors (n=78) Sepsis Nonsurvivors (n=28) p value*

Age (years) 64.9 ± 14.4 56.1 ± 18.0 67.6 ± 17.0 0.0040
Gender (% Male) 7 (34.80%) 59.00% 60.70% 0.8747
Pathogen

S. aureus N/A 26% 18% 0.3631
S. pneumoniae N/A 26% 14% 0.1446
Enterobacteriaceae N/A 29% 11% 0.0216

Smoker 21.70% 30.80% 25.00% 0.5503
Alcohol abuse 17.40% 17.90% 10.70% 0.3325
Immunosuppression 0% 6.40% 7.10% 0.9003
Comorbidities

Neoplastic disease 13.00% 6.40% 21.40% 0.0684
Diabetes 30.40% 32.10% 35.70% 0.7313
Congestive heart failure 0% 6.40% 14.30% 0.2707
Chronic kidney disease 26.10% 21.80% 25.00% 0.7342
Chronic liver disease 8.70% 5.10% 21.40% 0.0453

*p value significance set at <0.05; compared only survivors with nonsurvivors
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data are not longitudinal and may not serve to predict 
patients. Nevertheless, we included comparative statistics to 
contextualize some realistic perspectives.

Patient demographics and available clinical data are 
summarized in Table 1. A comparison of demographics 
of the survivors (n=78) and nonsurvivors (n=28) reflected 
the expected clinical profile for more severe diseases. 
Enterobacteriaceae infection is higher among nonsurvivors. 
The nonsurvivors were generally older. Liver disease is also 
significantly higher in nonsurvivors. These reflect that several 
factors may influence mortality in sepsis. Nonetheless, 
a common host response or deficiency in these protean 
conditions may explain the susceptibility of individuals to 
more severe conditions.

Initial sample cluster analysis measuring signal intensities 
revealed three sample outliers. Three samples (designated as 
SEPSHK31, SEPUNC13, and SEPUNC14) were excluded 
based on the resulting sample clustering, shown in Figure 2. 
The resulting expression matrix containing 10,000 genes from 
126 patient samples was used for the WGCNA analysis.

Sample re-clustering according to gene expression 
levels in each sample resulted in a cluster tree depicting the 
relationship among the samples. There was no bias regarding 
signals’ differences and overall averages with survival.

For WGCNA, we screened for the soft-threshold power 
using a scale-free topology index fit (Figure 3). Based on the 
results, we chose the power value 12, where scale independence 
was above 0.8 and mean connectivity had a relatively high 

value. With the set soft power and minimum module size 
defaultly set at 30, WGCNA module identification resulted 
in forty distinct gene co-expression modules arbitrarily 
designated with unique module colors. We then computed 
module eigengene values and clustered the modules based 
on the calculated values (Figure 4). Finally, we combined 
closely related sets by merging modules close to each other 
using a cutoff of 0.2. This merging resulted in 15 modules 
named using unique colors. Figure 5 shows the cluster 
dendrogram of the modules.

We then quantified the correlations between the co-
expression modules and the measured clinical traits. The 
correlation between clinical traits and merged gene modules 
is shown in Figure 6. From this heatmap, co-expression 
modules that are significantly associated with various clinical 
traits can be identified. For survival as outcome, four modules 
are significant, namely, MEplum1 (correlation index: -0.32), 
MEsteelblue (correlation index: -0.3), MEbrown (correlation 
index: -0.29), and MEgrey60 (correlation index: -0.23). 
Interestingly, all four were negatively correlated with sepsis 
survival, with general downregulation in nonsurvivors. In 
addition to survival, the present data also showed parallel 
comparisons among various severity states. A composite of 
severe, shock, and non-surviving patients in complicated 
states were found to have downregulated MEbrown modules. 
It is surprising, however, that aside from this module, our 
results showed minimal differences in the transcriptional 
profiles of the various severity, especially among survivors.

Figure 2. Dendrogram and trait heatmap of study samples showing the insignificant bias of the sample clustering to selected clinical 
traits. Notably, there was no bias in the clustering pertinent to survival.
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We then performed GO enrichment analysis for the 
genes in the four significant co-expression modules. Table 2 
shows the resulting top enrichments for the modules, while 
Figure 7 shows the protein-protein interaction network.

Using log10-fold change ≥2 and p<0.05 as cutoff values, 
differential gene expression (DGE) analysis revealed 1,013 
differentially expressed genes, 989 of which were signifi-
cantly downregulated in sepsis nonsurvivors. Figure 8 shows 
a volcano plot of the log10FC vs. the p value (expressed as 
-log10 p value) for all probe sets.

The highly correlated genes of MEsteelblue and 
MEgrey60 four genes had highly negative log10FC and 
high degrees of module membership in the immunity-
related modules. PSME2 (proteasome activator subunit 2) 
and PSMB9 (proteasome 20s subunit beta 9) are members 
of MEsteelblue, while TAF10 (TATA-box binding protein 
associated factor 10) and SNAPIN (SNAP associated 
protein) are from MEgrey60. These four genes were signifi-
cantly downregulated in septic patients who died compared 
with those who survived. In addition, the hub genes of the 
MEplum1 module, JUNB, and CEBPD were also signifi-

Figure 3. Scale independence and mean connectivity of different soft-thresholding values. A soft-threshold power 
was set at 12 based on a scale-free topology fit index with the corresponding mean connectivity near 
minimum, indicating the discrimination of more influential genes under these conditions.

Figure 4. Clustering of module eigengenes. The inferred gene sets were assigned arbitrary colors, and the minimum 
membership set was at 30 (combining sets is less than 30 with the nearest neighbor).
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cantly downregulated in sepsis nonsurvivors. Figure 9 shows 
the expression of these genes in septic patients.

Next, we determined the prognostic marker potential 
of the selected genes. In Figure 9, ROC analyses showed a 
moderately high correlation to survival (AUC: 70-80%).

Lastly, we plotted the ROC curves of the candidate 
genes using an independent GEO DataSet by Pachot et al. 
(GSE95233) to assess and validate the prognostic value of 
the hub genes in an external cohort (Figure 10). Interestingly, 
the position of the JUNB gene (AUC>0.80) as a potential 
sepsis survival prognosticator is further supported.

DISCUSSION
 
Tsalik and colleagues’ study identified genes encoding 

for expressed sequence variants that may be causally related 
to multiple sepsis outcomes.13 Using the same dataset, our 
present study uncovered additional molecular patterns 
involved in sepsis and focused on identifying essential genes 
associated with the disease’s survival. To achieve this, we 
performed WGCNA, an analysis that can cluster highly 
correlated genes and identify key module eigengenes or hub 
genes through network analysis.14 Our analysis revealed 

Figure 5. Gene dendrogram of sepsis samples and derived modules. The distinct groups of correlated gene sets are evident by the 
obvious dips in the branches that are disparate from each other.

Table 2. GO enrichment analysis in terms of biological processing of genes in MEsteelblue, MEgrey60, 
MEbrown, and MEplum1

Module Term ID Term Name P-value
MEsteelblue GO:1900245 Positive regulation of the MDA-5 signaling pathway 0.04910

GO:0035455 Response to interferon-alpha 2.59x10-5

GO:0034340 Response to type I interferon 6.72x10-12

GO:0060337 Type I interferon signaling pathway 1.46x10-10

MEgrey60 GO:0002444 Myeloid leukocyte-mediated immunity 1.45x10-15

GO:0043299 Leukocyte degranulation 4.02x10-15

GO:0002446 Neutrophil mediated immunity 7.83x10-15

GO:0042590 Antigen processing and presentation of exogenous peptide 0.04390
MEbrown GO:0009058 Biosynthetic process 0.02270

GO:0044238 Primary metabolic process 0.00033
GO:0071704 Organic substance metabolic process 0.00033
GO:0044237 Cellular metabolic process 0.00047

MEplum1 GO:0051254 Positive regulation of RNA metabolic process 0.03850
GO:0010628 Positive regulation of gene expression 0.05000
GO:0051173 Positive regulation of nitrogen compound metabolic process 0.05000
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co-expression modules associated with the different stages 
of sepsis. Minimal differences were observed in the various 
sepsis severity states — SIRS, severe, and shock — (p>0.05). 
However, there were modules correlated with survival (Alive 
vs. Dead, p<0.05). The functional enrichment analysis of 
the modules using STRING revealed similar functions of 
some associated modules.

The significance of associated immunity-related modules 
(MEgrey60 and MEsteelblue) is expected but exciting. The 
MEsteelblue module was hugely enriched in pathways 
related to biological processes of defense response to a virus, 
innate immune response, type I interferon signaling pathway, 
and defense response to other organisms. Since sepsis 
pathogenesis is dependent on the innate immune response, 
perturbations in various innate immunity components can 
cause the clinical progression of the condition.15 There is a 
pronounced innate immunity dysfunction found in endo-

thelial cells, neutrophils, macrophages, monocytes, natural 
killer (NK) cells, and dendritic cells during sepsis.16 This 
condition undermines the host response in eliminating 
and clearing invading pathogens, including bacteria and 
viruses. Although the diagnosis of viral sepsis is rare, any 
virus can induce sepsis in susceptible populations such as 
neonates and infants.17 Type I interferons (IFNs) are cyto- 
kines secreted by innate immune cells to modulate antiviral 
and antibacterial immunity and activate the subsequent 
adaptive immune response.18,19 However, more research is 
still required to elucidate the causality between prolonged or 
halted IFN expression and viral persistence.20

MEgrey60 was associated with myeloid leukocyte 
mediated immunity, leukocyte degranulation, and myeloid 
cell activation in the immune response. Myeloid-derived 
suppressor cells are essential in effectively regenerating 
functional neutrophils, monocytes, and DCs.16 However, 

Figure 6. Module-trait relationships between clinical traits and module eigengenes. Each cell contains the corresponding correlation 
coefficients (upper value) and p value (lower value). Four top modules significantly associated with sepsis survival can 
be identified by focusing on the sepsis-alive-vs-dead column. These include MEplum1 (correlation index: -0.32, p= 
0.0002), MEsteelblue (correlation index: -0.3, p= 0.0005), MEbrown (correlation index: -0.29, p= 0.0007), and MEgrey60 
(correlation index: -0.23, p= 0.007). These modules are negatively correlated with sepsis survival; their expression levels 
were significantly lower in patients who died than in those who survived.
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Figure 7. Protein-protein interaction network of modules associated with sepsis survival. A discussion of the 
inferences is presented in the text.

Figure 8. Volcano plot indicating the upregulated and downregulated genes in sepsis nonsurvivors. Differentially 
expressed genes are highlighted in orange (p<0.05). These broadly demonstrate differentially expressed 
genes expressed less in nonsurvivors (bias to upper left quadrant).
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Figure 9. Expression levels of PSME2, PSMB9, TAF10, SNAPIN, CEBPD, and JUNB in sepsis survivors and nonsurvivors (p<0.05). 
All genes had decreased expression in the nonsurvivors. Receiver-operator curve analyses showed moderate to good 
(70-80%) AUC for all markers.
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Figure 10. ROC curves of the hub genes TAF10, SNAPIN, PSME2, PSMB9, JUNB, and CEBPD using GSE95233. In this verification 
dataset, the candidate JUNB was found to have an AOC >0.85, making this the most promising prognostication marker 
for survival among the candidates.

the progressive shift towards immature myeloid cell release 
over the mature neutrophil release and other myeloid cell 
dysfunctions during sepsis may orchestrate sepsis-acquired 
immunodeficiency.21 Neutrophils may eliminate pathogens 
through degranulation; however, a population of this cell, 
known as low-density neutrophils (LDNs), were observed to 
play a pivotal role in sepsis-induced immune suppression.22 
As possibly depicted by the general downregulation of the 
modules and genes, these cells are also crucial in immune 
paralysis – the leading cause of death in most sepsis patients 
– which occurs after systemic inflammation despite pathogen 
clearance.22 Intriguingly, this trend of underactivation is 
evident in both immune-related modules, MEgrey60 and 
MEsteelblue. Taken together, these data hint that survival-
associated genes may involve multiple innate immune 
responses towards various pathogen types, and exhaustion of 
these components encompasses immune paralysis related to 
patient survival.

DGE analysis, combined with the PPI network 
interaction analysis, identified the crucial hub genes in these 

modules. The MEsteelblue module contained the two essential 
genes: PSME2 and PSMB9. PSME2 (proteasome activator 
subunit 2) is a subunit of the 26S proteasome for antigen 
processing.23 In a separate gene expression analysis, PSME2 
and other immune response genes had consistently low levels 
of expression in the melioidosis cohort. This trend suggests an 
altered defense response or a reduced proteasomal activity at a 
later infection stage.24 PSMB9 (proteasome 20S subunit beta 
9) is another human proteasomal subunit found in human 
monocytes.25 Together with other immunoproteasome 
subunits, PSMB9 was significantly expressed in monocytes 
in an idiopathic inflammatory myopathies (IIM) study.26 It 
was also significantly expressed during the early stages of 
sepsis.27 Since our findings revealed its downregulation in 
patients who ultimately died of sepsis, it may be possible 
that PSMB9 was initially expressed in the earlier stages of 
infection and then declined at the latter stages where immune 
exhaustion was evident. Notably, a rapid, LAMP-based, 29-
mRNA panel for acute infection and sepsis diagnostic and 
prognostic test included PSMB9 and is preparing for a 
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prospective study as part of a registrational trial.28 Incidentally, 
both PSME2 and PSMB9 genes are induced by gamma-
interferon, a type II interferon secreted predominantly by 
NK cells during an antimicrobial innate immune response.29-31

In the grey60 module, TAF10 and SNAPIN genes 
were amongst the relevant hub genes. TAF10 encodes for 
transcription factor IID (TFIID) subunits that coordinate 
transcription initiation by RNA polymerase II to various 
activators and repressors.32 Langley and Kingsmore observed 
that TAF10 and other TATA box-binding proteins had 
reduced expression in sepsis death based on a separate sepsis 
prognosis biomarker study.33 However, the exact role of TAF10 
in sepsis needs further elucidation. Meanwhile, SNAPIN 
associates with the SNARE (soluble N-ethylmaleimide-
sensitive fusion protein attachment protein receptor) 
complex and the BLOC-1 (biogenesis of lysosome-related 
organelles) complex.34 SNAPIN binds with TLR-2 to activate 
macrophages, and its expression was deemed nonspecific to 
diseases.35 Further studies showed that SNAPIN is essential in 
autophagosomal acidification and maturation. These processes 
occur by preventing proton leakage in macrophages.36 
Notably, mutations in SNAPIN and other BLOC-1 subunits 
could bring forms of Hermansky-Pudlak syndrome (HPS) 
characterized by immunodeficiency in some individuals.37,38 

In conjunction with the theme of immune exhaustion in late 
sepsis, the downregulation of SNAPIN expression in sepsis 
nonsurvivors suggests macrophage dysfunction.

The protein-protein interaction network analysis and 
GO analysis highlighted only the role of the MEplum1 in 
transcription regulation. Upon hub gene exploration, however, 
we found it interesting that two of its genes - CEBPD and 
JUNB - also have functions in the immune response.

CEBPD (CCAAT enhancer binding protein delta) 
is a protein-encoding gene critical for gene regulation in 
the immune and inflammatory response and possibly with 
macrophage activation and differentiation.39 Banerjee 
et al. reported that CEBPD displayed a protective role 
against underlying sepsis-induced lethality using irradiated 
CEBPD-deficient mice. Their models exhibited increased 
pro-inflammatory cytokines, including IL-6 and TNF-α, 
and increased expression of chemokines, specifically, 
CXCV11, MCP-1, and MIF-1α.40 Its ablation in mice 
models also conferred some protection against pneumococcal 
pneumonia.41 However, Klebsiella pneumoniae-induced 
pneumonia did not show a similar trend, where they 
suspected CEBPD affecting macrophage mobilization.42 
Looking at gene expression profiles, Godini et al. reported 
the upregulation of CEBPD in dendritic cells, neutrophils, 
and macrophages exposed to septic plasma.43 They verified 
this in another transcriptome data from children with septic 
shock.44 However, further data on CEBPD in deceased septic 
patients are limited.

JUNB ( JunB proto-oncogene or AP-1 transcription factor 
subunit) encodes transcription factors for regulating gene 
activity after primary growth factor response.45 The protein 

product of this gene is involved in various cellular processes, 
including proliferation and differentiation.46 Available 
evidence also showed that this protein has a role in myeloid 
immune activation. Fontana et al. used macrophages derived 
from JUNB-deficient mice to show that JUNB augments gene 
expression for cytokines, chemokines, interferon-associated 
genes, and other immune function genes.47 Khoyratty et al. 
also observed a similar trend with neutrophils from JUNB 
knockout mice. They saw that knocking out JUNB results in 
an attenuated Cav 1 expression, a gene involved in neutrophil 
activation, adhesion, and transendothelial migration.48 In 
addition, this protein orchestrates Treg-mediated immune 
homeostasis by facilitating IRF4-dependent transcription 
for effector Treg differentiation.49,50 In terms of sepsis 
prognostication, multiple studies have already reported 
differential gene expression of JUNB. Cai et al. included 
JUNB in the differential gene set of monocytes in their 
research, where they established a diagnostic tool for early 
sepsis.51 Another study also reported higher expression 
of JUNB in a sepsis group versus the healthy control.52 
However, our results using two independent datasets showed 
downregulation of JUNB in sepsis nonsurvivors. Since JUNB 
is involved in immune cell activation and proliferation, 
this downregulation in nonsurvivors could contribute to 
immune cell exhaustion, particularly in late sepsis.

Altogether, our data support the theme of immune 
exhaustion in late sepsis. Looking back at Figure 6, we can see 
that the immunity-related modules (MEsteelblue, MEgrey60, 
and MEplum1) were downregulated in deceased septic 
patients but are upregulated in sepsis survivors compared to 
healthy controls. Consistent with other DEG studies, the hub 
genes of these modules were mainly upregulated in septic 
patients compared with healthy controls.27,51,52 However, 
disease progression may lead to overwhelming, rampant 
immune dysfunction and eventual immune exhaustion. 

We also noted significant downregulation of the genes 
in the MEbrown module. This large module involved a wide 
array of primary metabolic processes and seemed to represent 
a wide array of metabolic processes affected during the 
worsening of sepsis.

Looking forward, molecular experiments are required to 
analyze and verify the role of these genes in sepsis progression 
and whether these are valuable in prognostications and as 
sepsis treatment targets.

CONCLUSIONS

In conclusion, our study provided evidence of the 
diverse co-expression gene modules associated with sepsis 
survival. Additionally, we identified six key genes, namely, 
TAF10, SNAPIN, PSME2, PSMB9, JUNB, and CEBPD. 
As these genes were significantly downregulated in sepsis 
nonsurvivors, we hypothesize that changes in their expression 
may signify immune exhaustion in late sepsis and may be 
good candidates for the sepsis prognosis. However, further 
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analyses are needed to validate valuable genes whose interplay 
manifests in sepsis survival.
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