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Objective  To  develop  a  non-invasive  predictive  model  for  coronary  artery  stenosis  severity
based on adaptive multi-modal integration of traditional Chinese and western medicine data.
Methods  Clinical  indicators,  echocardiographic  data,  traditional  Chinese  medicine  (TCM)
tongue manifestations, and facial features were collected from patients who underwent coro-
nary computed tomography angiography (CTA) in the Cardiac Care Unit (CCU) of Shanghai
Tenth People's Hospital between May 1, 2023 and May 1, 2024. An adaptive weighted multi-
modal  data  fusion  (AWMDF)  model  based  on  deep  learning  was  constructed  to  predict  the
severity of coronary artery stenosis. The model was evaluated using metrics including accura-
cy, precision, recall, F1 score, and the area under the receiver operating characteristic (ROC)
curve (AUC). Further performance assessment was conducted through comparisons with six
ensemble machine learning methods, data ablation, model component ablation, and various
decision-level fusion strategies.
Results  A total of 158 patients were included in the study. The AWMDF model achieved ex-
cellent  predictive  performance  (AUC  =  0.973,  accuracy  =  0.937,  precision  =  0.937,  recall  =
0.929, and F1 score = 0.933). Compared with model ablation, data ablation experiments, and
various traditional machine learning models, the AWMDF model demonstrated superior per-
formance.  Moreover,  the  adaptive  weighting  strategy  outperformed  alternative  approaches,
including simple weighting, averaging, voting, and fixed-weight schemes.
Conclusion  The  AWMDF  model  demonstrates  potential  clinical  value  in  the  non-invasive
prediction of coronary artery disease and could serve as a tool for clinical decision support.

 

 

1 Introduction

In  recent  years,  the  incidence  of  coronary  artery  disease
(CAD) has been steadily rising,  with morbidity and mor-
tality  rates  remaining  persistently  high,  and  the  number
of  affected  individuals  is  estimated  to  be  approximately
330 million [1]. The current “gold standard” for diagnosing

coronary  artery  stenosis  is  coronary  computed  tomogra-
phy angiography (CTA). However, due to its invasive na-
ture,  non-invasive  diagnostic  approaches  for  CAD  have
become a research focus recently. With advances in com-
putational  medicine,  the  value  of  non-invasive  diagnos-
tics  leveraging  data  and  model  development  has  gained
growing  recognition [2-4].  Traditional  Chinese  medicine
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(TCM)  diagnostic  methods  maintain  an  inherent  advan-
tage in non-invasive diagnostics for CAD. Recent studies
have  shown  that  the  objectification  of  TCM’s  four  diag-
nostic  techniques contributes to the diagnosis  of  CAD [5].
TCM diagnostic approaches, including facial diagnosis [6],
tongue  diagnosis [7],  and  pulse  diagnosis [8],  offer  unique
advantages in identifying CAD.

TCM  diagnostics  emphasize  the  integration  of  the
four  diagnostics  (inspection,  ausculation  and  olfaction,
inquiry,  and  palpation)  to  form  a  comprehensive  judg-
ment  of  diseases,  which  bear  certain  similarities  to  the
multimodal  data  fusion  approach  employed  in  contem-
porary  artificial  intelligence  (AI)  research.  By  integrating
data  from  multiple  sources,  multimodal  fusion  in
medicine  facilitates  complementary  information  ex-
change among diverse datasets, promoting prediction ac-
curacy and model robustness [9].

This  study  combined  tongue  and  facial  images  from
TCM diagnostics with laboratory test results and echocar-
diographic  data  from  modern  medicine  to  construct  an
integrated  non-invasive  diagnostic  model.  Additionally,
an adaptive weighting module was incorporated into the
model, enabling dynamic adjustment of the contribution
of  data  from  different  modalities  to  optimize  predictive
performance.  This  approach  aims  to  provide  accurate
probability  predictions  for  high-risk  coronary  artery
stenosis, which strengthens risk stratification for CAD. 

2 Data and methods
 

2.1 Study participants

The  patients  included  in  this  study  were  recruited  from
the Cardiac Care Unit (CCU) of Shanghai Tenth People’s
Hospital.  The  data,  which  were  collected  from  May  1,
2023  to  May  1,  2024,  consist  of  laboratory  parameters,
echocardiographic  findings,  and  TCM  diagnostic  images
of the tongue and face.  This study was reviewed and ap-
proved  by  the  Ethics  Committee  of  Shanghai  University
of  Traditional  Chinese  Medicine  (2020-916-125)  and
registered  in  the  Chinese  Clinical  Trial  Registry
(ChiCTR2100043546).  The  study  was  conducted  in  strict
accordance  with  the  ethical  principles  outlined  in  the
Declaration  of  Helsinki  by  the  World  Medical  Associa-
tion.  Written  informed  consent  was  obtained  from  all
participants  prior  to  their  enrollment,  and  comprehen-
sive  information  regarding  the  study’s  purpose,  proce-
dures,  potential  risks,  and expected benefits  was  provid-
ed to each participant. 

2.1.1 Diagnostic criteria　The diagnostic criteria for CAD
were based on the Internal Medicine (9th Edition), which
outlines acute and chronic CAD diagnostic standards [10]. 

2.1.2 Inclusion  criteria　 Patients  were  included  if  they
met the following criteria: (i) fulfill the diagnostic criteria

for CAD; (ii) age between 20 and 85 years; (iii) presence of
typical chest pain symptoms (e.g., episodic angina or op-
pressive  pain);  (iv)  presence  of  weakened  heart  sounds
on  auscultation;  (v)  documentation  of  ST-segment  ab-
normalities on electrocardiography; (vi) coronary angiog-
raphy-confirmed stenosis ≥ 1 vessel with severity > level
1  according  to  the  2019  European  Society  of  Cardiology
(ESC)  Guidelines  for  the  Diagnosis  and  Management  of
Chronic Coronary Syndromes [11]. 

2.1.3 Exclusion  criteria　 The  exclusion  criteria  were  as
follows: (i) patients who did not meet CAD diagnostic cri-
teria;  (ii)  patients  diagnosed  with  malignant  tumors  or
critical  illnesses;  (iii)  women  who  were  pregnant  or  lac-
tating; (iv) individuals with incomplete data. 

2.2 Collection and processing of multi-modal data
 

2.2.1 Collection and analysis of clinical data　Clinical da-
ta  are  comprised  of  information  on  comorbidities,
echocardiographic vascular data, laboratory biochemical
indicators,  and  thromboelastography  results.  Data  were
categorized based on the presence or  absence of ≥ 75%
stenosis  of  the  coronary  artery  following  CTA  examina-
tion.  Cases  with  stenosis  <  75%  were  classified  as  nega-
tive samples, while cases with stenosis ≥ 75% as positive
samples. 

2.2.2 Collection of TCM tongue and facial data　Tongue
and facial  images  were  collected and analyzed using the
TFDA-1 digital tongue and facial diagnostic device (regis-
tration No. 20212200604). The image acquisition parame-
ters  were  standardized  as  follows:  shutter  speed  of  1/
125 s, aperture value of F6.3, and international organiza-
tion for standardization (ISO) sensitivity of 200. The diag-
nostic device is shown in Figure 1. Image acquisition fol-
lowed  a  standardized  protocol  between  8:30  am  and
11:30  am.  Patients  were  seated  upright,  facing  the  imag-
ing device, with the built-in standardized light source ac-
tivated.  Each  patient’s  head  was  positioned  at  the  chin
alignment mark on the device. During tongue image col-
lection,  patients  were  instructed  to  close  their  eyes  and
protrude their tongue. During facial image collection, pa-
tients maintained both mouth and eyes closed. 

2.3 Construction of the multi-modal algorithm

The  model  was  built  in  a  Python  environment  using  the
PyTorch  framework.  The  architecture  of  the  adaptive
weighted  multi-modal  data  fusion  (AWMDF)  model
based on deep learning is illustrated in Figure 2, and the
model  parameters  are listed in Table 1.  Due to the pres-
ence of residual modules and attention blocks, the mod-
el’s  computational  complexity  rises,  which  may  affect
computational  accuracy  and  lead  to  overfitting.  To
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address  this,  a  dropout  layer  was  added  after  the  fully
connected layer  in  the model,  and L2 regularization was
employed  to  constrain  the  model  parameters.  These
measures  help  reduce  parameter  redundancy  and  pro-
mote the model’s generalization capability.

Facial and tongue images were preprocessed through
standardization and subsequently passed through residu-
al  and  self-attention  modules  to  extract  data  features.

These  features  were  then  put  into  the  adaptive  fusion
module.  After  feature  selection,  clinical  indicators  were
integrated with  the  tongue and facial  data  within the  fu-
sion  module.  The  model  dynamically  adjusted  the  out-
put weights of the tongue, facial, and clinical data follow-
ing  the  relative  importance  of  each  data  type  in  the  pre-
diction process.

The  model  integrated  weighted  multimodal  features
derived  from  tongue,  facial,  and  clinical  data  to  perform
binary classification for identifying CAD patients with sig-
nificant stenosis (≥ 75% luminal narrowing). 

2.4 Processing of image data

Tongue and facial image data were normalized to a reso-
lution of 256 × 256 pixels. The ResNet50 architecture was
used by the residual module to boost the depth of image
feature  extraction,  facilitating  the  identification  of  differ-
ential  features.  Additionally,  a  self-attention module was
integrated  to  strengthen  the  model’s  learning  of  critical
feature  information.  After  processing  using  the  residual
and  self-attention  modules,  the  extracted  features  were
concatenated  and  passed  into  the  adaptive  decision  fu-
sion module for further processing and integration. 

2.5 Processing of clinical data

The  included  variables  comprised  risk  factors  of  CAD,
echocardiographic  data,  and  laboratory  biochemical  pa-
rameters.  Variables  with over  30% missing data were ex-
cluded. For variables with under 10% missing data, mean
imputation  was  applied,  whereas  those  with  10%  to  30%

 

A B C

 
Figure 1   TFDA-1 digital tongue diagnostic instrument
A, rear view. B, front view. C, side view.
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Figure 2   The schematic diagram of the AWMDF model

 

Table 1   Parameters of the AWMDF model

Modal Layer name Type Output shape

Face

Conv2D-1 Convolutional Layer [batch, 64, 128, 128]

BatchNorm-1 Batch normalization [batch, 64, 128, 128]

ReLU-1 Activation function [batch, 64, 128, 128]

MaxPool2D-1 Max pooling [batch, 64, 64, 64]

ResidualBlock-1 Residual block [batch, 64, 64, 64]

SelfAttention-1 Self-attention mechanism [batch, 64, 64, 64]

AdaptiveAvgPool2D-1 Adaptive average pooling [batch, 64, 1, 1]

Tongue

Conv2D-1 Convolutional layer [batch, 64, 128, 128]

BatchNorm-1 Batch normalization [batch, 64, 128, 128]

ReLU-1 Activation function [batch, 64, 128, 128]

MaxPool2D-1 Max pooling [batch, 64, 64, 64]

ResidualBlock-1 Residual block [batch, 64, 64, 64]

SelfAttention-1 Self-attention mechanism [batch, 64, 64, 64]

AdaptiveAvgPool2D-1 Adaptive average pooling [batch, 64, 1, 1]

Lab

Linear-1 Fully connected layer [batch, 128]

ReLU-2 Activation function [batch, 128]

BatchNorm1D-1 Batch normalization [batch, 128]

Dropout-1 Dropout [batch, 128]
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missing  data  were  handled  using  placeholder  values  for
subsequent estimation.

Due  to  the  imbalance  in  the  sample  size  within  this
model, this study introduces the Synthetic Minority Over-
Sampling  Technique  (SMOTE)  to  promote  the  model’s
ability  to  recognize  minority  class  samples,  reduce  the
data bias caused by imbalanced samples, and avoid over-
fitting  owing  to  random  oversampling [12].  Using  this
method,  minority  class  samples  were  selected,  and  for
each minority  sample,  its  nearest  neighbors were identi-
fied. The minority samples were expanded with the use of
a  weighted  combination  of  the  original  sample  and  its
neighbors. This approach effectively addresses the recog-
nition  problems  of  minority  class  samples  in  binary
classification. 

2.6 Adaptive module architecture

The  adaptive  decision  module  dynamically  updated  the
output  weights  of  the model  based on the individual  ac-
curacy performance of each data modality (tongue, facial,
and  clinical  data).  The  updated  weights  were  then  inte-
grated  into  the  model  to  strengthen  the  final  classifica-
tion  outcome.  Unlike  fixed-weight  fusion  methods,  the
adaptive  decision  fusion  mechanism  allowed  the  model
to  learn  weights  during  training,  enabling  the  contribu-
tion of  input  features  from different  modalities  to  be dy-
namically  adjusted  in  line  with  task-specific  require-
ments.  Under  this  mechanism,  the  final  fused  feature
vector is represented as:

fcombined = ωtongue× ftongue+ωface× fface+ωlab× flab (1)

f(tongue/face/lab)Here,  represents  the  function  outputs  of
tongue data, facial data, and clinical data after feature ex-
traction  by  the  model,  respectively.  Where ω and b de-
note  the  classification  weight  matrix  and  bias  term,  re-
spectively.  The  weighted  fusion  results  were  passed
through a fully connected layer, and the final binary clas-
sification output is expressed as:

output = σ (ω× fcombined+b)

Softmax was used as  the activation function.  The de-
tailed process for calculating model parameters is  as fol-
lows:  initial  weight  data  were  provided  for  different
modalities, and classification probabilities were obtained
through the activation function (softmax). The model loss
was  calculated  using  the  cross-entropy  loss  function.  In
the  adaptive  mechanism,  the  model  dynamically  adjust-
ed the weights during training based on the contribution
of  each  modality  to  classification  performance.  During
each  backpropagation  step,  weight  updates  were  per-
formed  based  on  the  gradient  and  learning  rate.  The
weights  were  updated  using  the  stochastic  gradient  de-
scent (SGD) optimizer.

The  gradient  and  learning  rate  calculation  processes
are represented as follows:

wtongue ← wtongue −η×
∂L
∂wtongue

(2)

wface ← wface −η×
∂L
∂wface

(3)

wlab ← wlab −η×
∂L
∂wlab

(4)

In contrast  to dynamic weight updating,  fixed-weight
fusion methods use predetermined,  constant weight val-
ues.  In  this  context, η represents  the  learning  rate, ∂ de-
notes the partial derivative, and L stands for the loss func-
tion.  Although  such  methods  can  perform  effectively  in
certain  simple  tasks,  they  exhibit  notable  limitations,  for
instance,  the  inability  to  adapt  to  the  varying  require-
ments of different tasks. In this study, the selected modal-
ities  (tongue,  facial,  and  pulse  features)  do  not  demon-
strate  strong  complementarity  in  identifying  coronary
artery  stenosis.  Therefore,  the  adaptive  mechanism,
through  dynamic  weight  adjustment,  overcomes  these
limitations by raising the model’s flexibility and accuracy,
allowing  it  to  better  accommodate  the  demands  of  di-
verse tasks. In this study, several alternative decision-lev-
el  fusion  methods  were  also  compared,  including  Sim-
pleWeight,  AverageWeight,  Voting,  and  FixedWeight,  to
evaluate their performance against the proposed dynam-
ic weight fusion approach. 

2.7 Model hyperparameters

The  model  was  implemented  using  the  PyTorch  frame-
work (v2.0.1) with the following computational resources:
GPU (Tesla V100), CPU (4 cores), and RAM (32 GB). The
dataset was divided into training and testing sets with an
8  :  2  ratio.  The  hyperparameter  settings  were:  learning
rate  =  0.001,  batch_size  =  16,  optimizer  =  Adam,
training_epochs  =  50.  Data  augmentation  techniques,
such  as  scaling  and  rotation,  were  applied  to  improve
model robustness during training. 

2.8 Gradient-weighted  class  activation  mapping  (Grad-
CAM) heatmap visualization

Grad-CAM  was  employed  to  visualize  the  model’s  focus
during decision-making. Grad-CAM extends convention-
al CAM methods by overcoming the limitation of requir-
ing  global  average  pooling  layers  in  network  architec-
tures [13].  It  calculates gradient information from the con-
volutional layer outputs to weight each feature map, cap-
turing the relationship between class predictions and fea-
ture maps. Grad-CAM allows intuitive visualization of the
key areas the model focuses on during training.  The cal-
culation is expressed as:
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Grad-CAMc = ReLU

(∑
k

ac
kA

k

)

ac
k

Ak

where  denotes  the  gradient-weighted  coefficient  for
the class concerning the feature map . 

2.9 Comparison with other machine learning frameworks

To  evaluate  the  model’s  feature  selection  performance,
tongue and facial  images were processed using the TCM
Tongue  Diagnosis  Analysis  System  (TDAS)  v2.0,  devel-
oped  by  Shanghai  University  of  Traditional  Chinese
Medicine.  In CAD diagnostics,  the tongue and facial  im-
ages were important diagnostic references [14, 15].

Tongue image features: evaluation of tongue body in-
dicators  includes  color  space  values  from  different  color
domains.  Texture  indicators  consist  of  contrast  (CON),
angular  second  moment  (ASM),  entropy  (ENT),  and
mean (MEAN). Texture indicators reflect the fineness and
depth of texture in the image. A higher ASM value corre-
sponds to lower CON, ENT, and MEAN values, indicating
finer  texture.  PerAll  and  PerPart  represent  tongue  coat-
ing  indices,  where  PerAll  is  the  ratio  of  tongue  coating
area  to  the  total  tongue  area,  and  PerPart  is  the  ratio  of
tongue  coating  area  to  the  area  without  coating.  Facial
color  indicators  include facial  hue,  saturation,  and value
(HSV)  color  space  indicators,  facial  red,  green,  and  blue
(RGB)  color  space  indicators,  and  facial  Lab  color  space
indicators.

Six  commonly  used  machine  learning  models  were
implemented  in  Python  to  compare  prediction  perfor-
mance:  logistic  regression,  decision  tree,  random  forest,
gradient boosting, support vector machine (SVM), and k-
nearest neighbors (KNN). The performance of tongue, fa-
cial, and clinical data after adaptive fusion was compared
with that of the AWMDF model to evaluate its superiority
in feature integration and accuracy prediction. 

2.10 Model evaluation

In deep learning, five commonly used evaluation metrics
are accuracy, the area under the receiver operating char-
acteristic  (ROC)  curve  (AUC),  precision,  recall,  and  F1
score.  Accuracy  represents  the  proportion  of  correctly
predicted  samples  to  the  total  number  of  samples,  pro-
viding an intuitive measure of the model’s overall perfor-
mance.  A  higher  accuracy  value  indicates  better  predic-
tive performance.

AUC  evaluates  the  model’s  classification  perfor-
mance at various thresholds. An AUC value approaching
1  indicates  superior  model  performance.  This  metric
reflects the model’s ability to discriminate between posi-
tive  and  negative  samples  and  is  particularly  robust  to
class  imbalance  issues.  Precision  is  defined  as  the  pro-
portion of predicted positive samples that are positive. It

measures  the  reliability  of  the  model’s  positive  predic-
tions. A higher precision value indicates fewer false posi-
tives when predicting positive samples. Recall (also called
sensitivity)  is  the  proportion  of  actual  positive  samples
correctly  identified  as  positive.  It  assesses  the  model’s
ability  to  capture  positive  samples.  A  higher  recall  value
indicates that the model successfully identifies more pos-
itive  instances.  F1  score  is  the  harmonic  mean  of  preci-
sion  and  recall,  balancing  the  trade-off  between  the  two
metrics.  The  F1  score  ranges  from  0  to  1,  with  a  value
closer to 1 demonstrating superior model performance.

Meanwhile,  ablation studies on the model  itself  from
both the data  and module  perspectives  were  conducted.
The  data-level  ablation  includes  tongue  images,  facial
images, and laboratory data, while the module-level abla-
tion  involves  the  residual,  self-attention,  and  adaptive
fusion modules. The model was evaluated under each ab-
lation setting. 

2.11 Statistical analysis

Statistical analyses were performed using SPSS 27.0. Con-
tinuous variables were expressed as mean ± standard de-
viation  (SD).  For  between-group  comparisons,  the  inde-
pendent  samples t test  was  applied  to  data  meeting  as-
sumptions  of  normality  and  homogeneity  of  variance,
while the Mann-Whitney U test was used for data that did
not meet these assumptions. The rank-sum test was em-
ployed  for  categorical  data. P <  0.05  was  considered  sta-
tistically significant. 

3 Results
 

3.1 Comparison of clinical data

A total of 158 patients with CAD were included, compris-
ing 84 males and 74 females. Significant differences were
observed  in  aortic  sinus  diameter,  left  ventricular  ejec-
tion  fraction  (LVEF),  creatine  kinase-MB  (CK-MB),  and
arachidonic  acid  (AA)  inhibition  rate  when  coronary
artery  occlusion  above  75%  was  treated  as  a  binary
variable (P <  0.05).  Moreover,  45 clinical  indicators  were
initially  included,  and  indicators  with  missing  data  of
more than 30% were excluded, leaving 34 valid indicators
(Table 2). 

3.2 Model data presentation

As  shown  in Figure  3,  the  AWMDF  model  achieved  an
AUC  of  0.973,  accuracy  of  0.937,  precision  of  0.937,  and
recall  of  0.929.  During  the  50  training  epochs,  accuracy
exhibited fluctuations around the 20th epoch, but gradu-
ally increased from the 20th to the 50th epoch. Both AUC
and precision improved progressively with the number of
training  epochs.  Recall  decreased  at  the  20th  epoch  but
gradually  increased  from  the  20th  to  the  50th  epoch  as
training progressed. 
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Table 2   Differences in clinical data of two categories of vascular obstruction degree

Item
Vascular occlusion < 75%

(n = 60)
Vascular occlusion ≥ 75%

(n = 98) χ2/t/U value P value

Coronary heart disease (yes/no) 31/29 70/32 0.92 0.862 6

Hypertension (yes/no) 36/24 29/69 1.88 0.078 8

Type 2 diabetes (yes/no) 40/20 33/65 1.58 0.221 0

Gender (male/female) 38/22 46/52 0.55 0.122 7

Aortic sinus diameter (mm) 32.83 ± 4.08 34.12 ± 3.18 1 106.50 0.033 2

Left atrial diameter (mm) 36.85 ± 5.53 36.66 ± 4.44 1 469.00 0.959 2

Left ventricular end-diastolic diameter (mm) 45.90 ± 5.62 46.44 ± 4.92 1 358.00 0.541 0

Left ventricular end-systolic diameter (mm) 31.95 ± 7.15 32.05 ± 5.61 1 388.50 0.669 2

Interventricular septal thickness (mm) 10.75 ± 1.97 10.48 ± 1.03 1 446.00 0.932 0

Left ventricular posterior wall thickness (mm) 10.18 ± 1.55 9.97 ± 0.87 1 416.50 0.780 1

LVEF (%) 52.45 ± 10.19 47.25 ± 11.23 1 900.00 0.008 1

S wave peak value 0.07 ± 0.02 0.07 ± 0.02 1 635.00 0.283 3

E/E' 11.03 ± 2.60 11.16 ± 2.30 1 424.50 0.997 4

Myoglobin (ng/mL) 86.29 ± 94.67 125.77 ± 260.07 2 322.00 0.902 2

CK-MB (ng/mL) 10.67 ± 26.14 30.66 ± 66.43 1 594.00 0.001 6

NT-proBNP (pg/L) 5 453.18 ± 9 798.11 2 625.69 ± 4 024.53 2 297.50 0.899 7

Total cholesterol (mmol/L) 4.33 ± 1.30 4.34 ± 1.15 1 700.50 0.667 4

Triglycerides (mmol/L) 1.44 ± 1.21 3.24 ± 15.35 1 583.00 0.256 9

HDL-C (mmol/L) 1.27 ± 0.29 2.52 ± 11.58 1 978.50 0.591 5

LDL-C (mmol/L) 2.50 ± 1.17 2.61 ± 0.96 1 433.00 0.303 3

Glycated hemoglobin (%) 6.82 ± 1.70 7.22 ± 1.80 1 217.00 0.118 1

Glucose (mmol/L) 6.64 ± 3.0 6.74 ± 2.68 1 675.50 0.648 8

INR 1.09 ± 0.32 1.00 ± 0.10 2 418.50 0.409 9

Fibrinogen (g/L) 3.96 ± 1.55 4.03 ± 1.30 2 177.00 0.600 8

D-Dimer (mg/L) 1.56 ± 2.34 1.29 ± 2.86 2 686.50 0.285 4

FDP (µg/mL) 5.76 ± 6.44 6.64 ± 18.26 1 404.50 0.826 7

Thromboelastography R (min) 5.58 ± 2.51 5.17 ± 1.00 693.00 0.979 7

Thromboelastography K (min) 1.65 ± 0.76 1.62 ± 0.47 631.00 0.549 9

Thromboelastography angle (deg) 67.65 ± 8.15 67.34 ± 5.37 741.00 0.607 3

Thromboelastography MA (mm) 66.26 ± 9.86 68.34 ± 5.87 − 0.95 0.350 8

Thromboelastography EPL (%) 0.14 ± 0.21 0.52 ± 2.19 684.00 0.880 1

Thromboelastography CI 1.19 ± 3.19 1.73 ± 1.41 625.50 0.448 5

AA inhibition rate (%) 67.67 ± 39.33 89.16 ± 22.35 514.00 0.013 2

ADP inhibition rate (%) 61.13 ± 27.54 72.35 ± 25.72 541.50 0.051 8

LVEF, left ventricular ejection fraction. S wave, systolic wave peak velocity. E/E', early mitral inflow velocity to early diastolic mitral

annular velocity ratio. CK-MB, creatine kinase-MB. NT-proBNP, N-terminal pro-B-type natriuretic peptide. HDL-C, high-density

lipoprotein cholesterol. LDL-C, low-density lipoprotein Cholesterol. INR, international normalized ratio. FDP, fibrin degradation

products. AA, arachidonic acid. ADP, adenosine diphosphate.
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Figure 3   Visual presentation of different training parameters in the AWMDF model
A, accuracy. B, AUC. C, precision. D, recall.
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3.3 Model ablation experiments

The use of  only  fully  connected layers  to  predict  tongue,
facial, and clinical data resulted in poor performance (ac-
curacy  =  0.552,  AUC  =  0.557,  precision  =  0.805,  and  F1
score = 0.561). The full model demonstrated significantly
better performance, with accuracy values exceeding 0.800.
However, the individual performance of the residual, self-
attention,  and  adaptive  modules  alone  was  suboptimal
(Table 3). These findings highlight the critical role of inte-
grating  the  adaptive  and  image  convolution  modules  in
the model construction process.

 
 

Table 3   Ablation experiment of the model module

Model Accuracy AUC Precision Recall F1 score

None 0.552 0.557 0.805 0.421 0.561

Res 0.689 0.863 0.916 0.578 0.705

SA 0.758 0.857 0.928 0.684 0.789

Ada 0.598 0.615 0.815 0.503 0.621

Res + SA 0.793 0.936 0.933 0.736 0.826

Res + Ada 0.804 0.913 0.901 0.817 0.857

SA + Ada 0.835 0.887 0.804 0.834 0.819

Res + SA + Ada 0.937 0.973 0.937 0.929 0.933

Res is the residual module, SA is the self-attention module, and

Ada is the adaptive module.
 

3.4 Model data ablation experiments

The  combination  of  tongue,  facial,  and  laboratory  data
achieved  the  best  predictive  performance.  Only  clinical
data  resulted  in  moderate  performance  (precision  =
0.851,  AUC  =  0.784,  recall  =  0.894,  F1  score  =  0.827,  and
accuracy  =  0.827).  Combining  clinical  data  with  tongue
image data yielded a more remarkable accuracy increase
than  clinical  data  in  combination  with  facial  image  data
(Table 4).

 
 

Table 4   Ablation experimental results of model data

Model Precision AUC Accuracy Recall F1 score

Lab + tongue + face 0.937 0.973 0.937 0.929 0.875

Lab + tongue 0.875 0.831 0.758 0.736 0.758

Lab + face 0.853 0.947 0.827 0.894 0.827

Lab only 0.851 0.784 0.827 0.894 0.827
 

3.5 Comparison  of  the  AWMDF model  parameters  with
other machine learning models

The  SVM  and  KNN  models  demonstrated  relatively
strong  performance,  with  prediction  accuracy  exceeding
0.8  as  compared  with  the  results  of  machine  learning
models  trained  on  feature-selected  data.  However,  the

AWMDF  model  outperformed  machine  learning  classifi-

cation  models,  achieving  superior  predictive  accuracy

and robustness (Figure 4).
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Figure 4   Comparison of the AWMDF model parameters
with different machine learning models

A, accuracy. B, precision. C, recall. D, F1 score. 

3.6 Comparison of different fusion methods

This  study  compared  four  different  fusion  methods  with
the  adaptive  fusion  approach.  The  first  method  was

SimpleWeight,  a  linear  fusion  based  on  the  size  of  each

data  modality’s  dimensions.  Three  alternative  fusion
strategies  were  employed  for  comparison:  (i)  Average

Weight, in which equal weights were assigned to each da-
ta  modality  (lab  =  0.34,  face  =  0.33,  tongue  =  0.33);

(ii) Voting, where the output weights were adjusted using

a  voting  mechanism;  and  (iii)  FixedWeight,  which  as-
signed  fixed  fusion  weights  to  each  modality  (lab  =  0.5,

face = 0.25, tongue = 0.25).
The adaptive fusion module demonstrated better per-

formance across accuracy, precision, recall, and F1 score.
The FixedWeight model outperformed the SimpleWeight,
AverageWeight,  and  Voting  strategies.  However,  meth-
ods  relying  solely  on  linear  weighting  (SimpleWeight),
equal  weighting (AverageWeight),  or  voting mechanisms
(Voting) exhibited suboptimal performance (Table 5).

 
 

Table 5   Parameters of different fusion methods

Method Accuracy AUC Precision Recall F1 score

SimpleWeight 0.733 0.861 0.808 0.801 0.804

AverageWeight 0.733 0.980 0.923 0.687 0.791

Voting 0.739 0.689 0.753 0.901 0.819

FixedWeight 0.809 0.949 0.875 0.796 0.834

AdaptiveWeight 0.937 0.973 0.937 0.929 0.933
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3.7 Visualization  of  deep  learning  results  of  tongue  and
face images

The  CAM  heatmap  indicates  that  the  patient’s  central
facial  region  was  the  AWMDF  model’s  primary  focus
during  the  model’s  training  and  prediction  process
(Figure  5).  Key  areas  of  attention  included  the  nasal  re-
gion, cheekbones, and parts of the forehead. This visual-
ization highlights the model’s ability to identify critical fa-
cial data regions that contribute significantly to its predic-
tions.  Additionally,  the CAM heatmap demonstrates that
the  model  effectively  learned  features  across  most  areas
of  the  tongue  body  during  training.  The  model  concen-
trated on the tongue coating, highlighting its significance
in prediction.
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Figure  5   Multi-modal  feature  visualization  based  on
Grad-CAM
A, heatmap of facial features. B, heatmap of tongue features. 

4 Discussion
 

4.1 Model assessment and investigation

From  a  diagnostic  perspective,  facial diagnosis—part of
TCM’s  inspectional methods—provides valuable  infor-
mation  related  to  CAD  by  assessing  changes  in  facial
complexion  and luster—pulse diagnosis.  Evaluating  the
pulse  characteristics  reflects  the  cardiovascular  system’s
condition and offers unique advantages in assessing vas-
cular stenosis risk—tongue diagnosis. Observing changes
in the tongue coating and body provides insights into in-
trinsic  conditions  associated  with  CAD.  Research  has
found  that  the  tongue  features  of  patients  with  CAD
exhibit  certain  specificity,  particularly  in  the  differences

in  the  texture  of  tongue  coating  and  parameters  in  vari-
ous  color  spaces [16].  Furthermore,  recent  studies  have
shown that facial complexion indices can serve as objec-
tive clinical indicators for the differentiation of TCM syn-
dromes in CAD patients [6, 17, 18]. Integrating TCM diagnos-
tic approaches enhances CAD risk assessment by provid-
ing  multidimensional  and  comprehensive  insights  that
compensate for the limitations of single-method western
diagnostic  paradigms.  The  growing  intelligence  and
modernization  of  TCM  diagnostics  further  underscore
the advancements in this field [19].

This  study predicts  high-risk coronary artery stenosis
(≥ 75%  blockage)  by  integrating  tongue  and  facial  im-
ages  with  clinical  data.  The  developed  model  demon-
strates  excellent  binary  classification  performance  for
vascular obstruction, achieving an AUC of 0.973, accura-
cy  of  0.937,  precision of  0.937,  and recall  of  0.929  on the
test  set.  These  results  highlight  the  effectiveness  of  data
fusion in classifying coronary artery stenosis. Ablation ex-
periments  revealed  that  the  individual  residual  module,
self-attention module, or adaptive module demonstrated
poor  performance.  However,  combining residual  or  self-
attention modules with the adaptive module at  the deci-
sion  layer  improved  prediction  accuracy  substantially.
The adaptive tongue texture module enables the model to
identify  critical  features  during  multimodal  data  fusion
autonomously,  avoiding  information  loss  caused  by  sin-
gle-weight connections [20, 21]. 

4.2 Multi-modal fusion and data ablation

In  the  multi-modal  fusion  of  models,  marked  progress
has been made in recent years. For instance, transformer-
based  attention  mechanisms  can  adjust  the  weight  rela-
tionships  among  input  data  elements.  Research  has
shown  that  the  dynamic  transformer  fusion  mechanism
achieved  sensitivity  and  specificity  both  above  95% [22].
Additionally,  the  dynamic  routing  fusion  method  is  a
technique  used  in  deep  learning  to  strengthen  the  rela-
tionships  among  features  and  improve  model  perfor-
mance. It aims to address the issues arising from the loss
of  translational  invariance  in  convolutional  neural  net-
works  (CNNs).  The  capsule  mechanism  establishes  dy-
namic  inter-feature  connections,  enabling  the  model  to
learn feature relationships. Research has shown that this
method has achieved favorable results in diagnosing mild
cognitive impairment in Alzheimer’s  disease patients [23].
However,  in  this  study,  facial  and tongue diagnostic  fea-
tures  exhibit  inherent  independence  in  TCM  practice.
Different modal data have certain independence, and the
attention to the interaction in the data extraction stage is
weak.  Therefore,  different  from  the  focus  on  the  content
between  data  using  the  existing  fusion  mode,  the  back-
end  fusion  mode  of  this  model  is  more  in  line  with  the
clinical  dialectical  reality.  In  the  experimental  study,  the
adaptive fusion achieved good results.
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Ablation  studies  also  showed  that  combining  clinical
data  with  tongue  images  achieved  higher  prediction  ac-
curacy  than  clinical  data  in  combination  with  facial  im-
ages,  indicating  that  tongue  images  play  a  more  critical
role  in  predicting  coronary  artery  stenosis.  The  impor-
tance  of  tongue  image  information  in  diagnosing  CAD
has also been manifested in recent clinical studies [7, 24, 25].

To  test  the  model’s  ability  to  learn  from  raw  images,
feature extraction of  tongue and facial  images using ma-
chine learning was compared. The AWMDF model signif-
icantly outperformed conventional machine learning ap-
proaches.  In  earlier  studies,  important  tongue  and  facial
features were extracted mainly by analyzing color compo-
nents  in  different  color  spaces.  The  superior  perfor-
mance  of  the  proposed  model  is  likely  to  stem  from  its
ability  to  extract  more  crucial  predictive  features  via
residual and self-attention modules. 

4.3 Interpretation mechanism of CAM-based model

A  heatmap  mechanism  was  employed  to  promote  inter-
pretability. The extracted tongue features covered most of
the tongue body and coating, which centers more on the
coating.  The extracted tongue features suggest  that coat-
ing  thickness  may  be  related  to  the  progression  of  CAD.
Studies  have  shown  that  gut  microbiota  varies  among
CAD  patients  with  greasy  and  non-greasy  tongue  coat-
ings,  suggesting  that  these  bacterial  differences  could
serve  as  potential  biological  markers  or  factors  influenc-
ing greasy tongue coating formation in these patients [26].
Furthermore, there is a correlation between gastrointesti-
nal  health  and  coronary  artery  lesions [27].  Facial  feature
extraction revealed that the model concentrated primari-
ly  on the nose,  cheekbones,  and forehead—regions with
more  prosperous  blood  supply  and  microcirculation.
This  finding  is  consistent  with  previous  research  report-
ing differences in these regions for CAD diagnosis [28].

Integrating  non-invasive  diagnostic  data  from  TCM
and  modern  clinical  data  considerably  enhances  the  ac-
curacy  of  CAD risk  assessment,  which holds  promise  for
clinical applications. Research on TCM diagnostics mod-
ernization,  mostly  through  multi-modal  data,  is  rapidly
expanding [29].  This  study  provides  new  perspectives  for
integrating  TCM  diagnostic  methods  into  modern
medicine  and  introduces  innovative,  non-invasive  tech-
niques  for  diagnosing  CAD.  This  study  has  some  limita-
tions, such as a small patient sample size. Expanding the
dataset,  particularly  incorporating  incomplete  data  sam-
ples  (e.g.,  missing  tongue  or  facial  image  data),  will  im-
prove real-world reliability and validity. In the model op-
timization,  this  study  applied  regularization  techniques
to  constrain  the  model  and  prevent  overfitting.  Despite
the  implementation  of  regularization  to  mitigate  overfit-
ting,  the  SMOTE-based  oversampling  technique  yielded
good F1 score performance, indicating the model’s strong
learning  ability  for  minority  class  samples.  However,  the

issue of increasing datasets remains an area that needs to
be  explored  in  future  research.  During  model  training,
some fluctuations were observed, which suggests that the
sample size needs to be increased in subsequent studies
to achieve better model fitting and more accurate predic-
tions in real-world scenarios.

Additionally,  this  study  focused  on  model  fusion
strategies  and  multi-modal  data  integration  but  lacked
external  validation.  Future  work  will  warrant  multi-cen-
ter, multi-hospital datasets to strengthen generalizability.
The  research  team  will  further  integrate  additional  TCM
diagnostic  dimensions,  such  as  pulse  diagnosis,  to  opti-
mize  and  validate  this  method,  aiming  to  provide  clini-
cians with a more precise and effective diagnostic tool. 

5 Conclusion

This study developed an AWMDF model based on multi-
modal  data  in  a  non-invasive  manner  to  predict  the  de-
gree of vascular stenosis in patients with CAD by integrat-
ing  data  and  image  information,  achieving  high  predic-
tive  performance.  The  adaptive  weighting  method
demonstrated effective performance in backend fusion of
multi-modal  data.  This  model  can  serve  as  a  non-inva-
sive clinical auxiliary diagnostic tool. 
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基于自适应权重多模态中西医数据融合方法的冠心病血管阻塞程度
预测模型的构建与评价

张冀豫, 许家佗*, 屠立平, 付洪媛

上海中医药大学中医学院, 上海 200120, 中国

 
【摘要】目的  基于中西医多模态数据的自适应融合，构建一种用于预测冠状动脉狭窄严重程度的无创模

型。方法   收集 2023 年 5 月 1 日至 2024 年 5 月 1 日期间，在上海市第十人民医院心脏重症监护病房

（CCU）接受冠状动脉计算机断层扫描血管造影（CTA）检查患者的临床指标、超声心动图数据、中医舌象

特征及面部特征信息。基于深度学习构建了一个自适应加权多模态数据融合（AWMDF）模型，以预测冠状

动脉狭窄的严重程度。采用准确率、精确率、召回率、F1 值及受试者工作特征曲线下面积（AUC）等指标

对模型进行评估。通过与六种集成机器学习方法的比较、数据消融实验、模型组件消融实验及多种决策层融

合策略进一步评估模型性能。结果  研究共纳入 158 例患者。AWMDF 模型具有优异的预测性能（AUC =

0.973，准确率 = 0.937，精确率 = 0.937，召回率 = 0.929，F1 值 = 0.933）。与模型消融、数据消融实验及

多种传统机器学习模型比较结果显示，AWMDF 模型性能更出色。此外，自适应加权策略优于简单加权、平

均法、投票法及固定权重等替代方案。结论  AWMDF 模型对冠心病无创化预测有一定价值，可作为临床辅

助诊断。

【关键词】冠心病；深度学习；多模态；临床预测；中医诊断
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