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Objective  To predict the potential targets of Qingfu Juanbi Decoction (青附蠲痹汤, QFJBD)
in treating rheumatoid arthritis  (RA) using an improved Transformer model  and investigate
the network pharmacological mechanisms underlying QFJBD’s therapeutic effects on RA.
Methods  First, a traditional Chinese medicine herb-target interaction (TCMHTI) model was
constructed to predict herb-target interactions based on Transformer improvement. The per-
formance of the TCMHTI model was evaluated against baseline models using three metrics:
area  under  the  receiver  operating  characteristic  curve  (AUC),  precision-recall  curve  (PRC),
and accuracy.  Subsequently,  a  protein-protein interaction (PPI)  network was built  based on
the predicted targets, with core targets identified as the top nine nodes ranked by degree val-
ues. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway  enrichment  analyses  were  performed  using  the  targets  predicted  by  TCMHTI  and
the targets  identified through network pharmacology method for  comparison.  Then,  the  re-
sults  were compared. Finally,  the core targets predicted by TCMHTI were validated through
molecular docking and literature review.
Results  The TCMHTI model achieved an AUC of 0.883, PRC of 0.849, and accuracy of 0.818,
predicting 49 potential  targets for QFJBD in RA treatment.  Nine core targets were identified:
tumor  necrosis  factor  (TNF)-α,  interleukin  (IL)-1β,  IL-6,  IL-10,  IL-17A,  cluster  of  differentia-
tion 40 (CD40), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), IL-4, and signal trans-
ducer  and  activator  of  transcription  3  (STAT3).  The  enrichment  analysis  demonstrated  that
the TCMHTI model predicted 49 targets and enriched more pathways directly associated with
RA,  whereas  classical  network  pharmacology  identified  64  targets  but  enriched  pathways
showing weaker relevance to RA. Molecular docking demonstrated that the active molecules
in  QFJBD  exhibit  favorable  binding  energy  with  RA  targets,  while  literature  research  further
revealed that QFJBD can treat RA through 9 core targets.
Conclusion  The  TCMHTI  model  demonstrated  greater  accuracy  than  traditional  network
pharmacology methods, suggesting QFJBD exerts therapeutic effects on RA by regulating tar-
gets like TNF-α, IL-1β, and IL-6, as well as multiple signaling pathways. This study provides a
novel framework for bridging traditional herbal knowledge with precision medicine, offering
actionable insights for developing targeted TCM therapies against diseases.
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1 Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune dis-
ease primarily affecting joints, and in several cases, it can
lead  to  disability [1].  In  traditional  Chinese  medicine
(TCM), RA is classified as Bi (痹) syndrome [2]. TCM prac-
titioners  have  developed  an  extensive  understanding  of
Bi syndrome over two millennia of practice, and based on
this  knowledge,  numerous  classical  formulas  have  been
created. Qingfu Juanbi Decoction (青附蠲痹汤 ,  QFJBD),
derived  from  the  classical  formula  Wutou  Decoction  (乌
头汤), includes Fuzi (Aconiti Lateralis Radix Praeparata),
Qingfengteng  (Sinomenii  Caulis),  Huangqi  (Astragali
Radix),  Baishao  (Paeoniae  Radix  Alba),  and  Mudanpi
(Moutan  Cortex),  which  can  significantly  alleviate  RA
symptoms,  such as  joint  swelling,  pain,  and limited flex-
ion and extension [3]. However, the mechanisms underly-
ing  the  effects  of  QFJBD  on  RA  remain  partially  under-
stood,  impeding  the  advancement  of  clinical  applica-
tions.

Drug-target  interaction (DTI)  experiments  have been
conducted  to  explore  and  explain  the  mechanisms  of
TCM.  Due  to  the  multi-component  and  multi-target  na-
ture  of  TCM,  current  DTI  experiments  are  quite  costly
and time-consuming, making it difficult to identify active
compounds and their corresponding biological targets [4].
Therefore,  network  pharmacology  has  been  increasingly
applied in TCM as a promising alternative [5], offering the
potential  to  address  the  limitations  of  expensive  and
time-consuming  DTI  experiments.  To  some  extent,  the
network  of “drug-target-disease” relationships  in  net-
work  pharmacology  aligns  with  the  multi-component
and multi-target properties of TCM [6]. However, the accu-
racy  of  network  pharmacology  predictions  is  often  com-
promised  by  incomplete  information  on  herbal  compo-
nents [7].

With  the  substantial  advancement  of  computer  sci-
ence,  machine learning has shown great  potential  appli-
cability  in  DTI  prediction.  However,  traditional  machine
learning  approaches  are  often  limited  by  their  heavy  re-
liance  on  manual  feature  engineering,  which  increases
the  complexity  of  model  development  and  may  lead  to
the  unexpected  exclusion  of  crucial  information [8].  In
contrast  to  traditional  machine  learning,  deep  learning
methods, with powerful feature learning capabilities, can
automatically  extract  high-level  abstract  features  from
raw  data  and  effectively  bypass  the  tedious  process  of
manual  feature  design.  More  importantly,  deep  learning
models  possess  superior  abilities  in  nonlinear  fitting,  al-
lowing them to capture complex interaction patterns be-
tween  drugs  and  targets  and  reveal  hidden  associations,
something  traditional  methods  struggle  to  achieve [9].
Thus,  deep learning demonstrates  significant  superiority
in DTI prediction.

Currently,  most  deep  learning-based  DTI  prediction
tasks  focus  on  western  drug-target  interactions.  In

contrast,  TCM  consists  of  numerous  components  that
cannot be represented by a single active compound. The
theory  of  TCM  defines  the  properties  of  herbs  based  on
dimensions such as nature, flavor, meridian tropism, and
toxicity. Previous research has shown that when herbs are
quantified  into  23-dimensional  vectors  based  on  these
properties,  herbs  with similar  efficacies  are  closer  in  Eu-
clidean  space [10].  Therefore,  this  study  quantifies  herbs
into 23-dimensional vectors. Due to the lack of structural
information for many proteins, amino acid sequences are
used  as  the  initial  representation  of  targets.  The  Trans-
former model [11],  proposed by the Google team, was ap-
plied in this study because both herb and target represen-
tations are in sequence form. The Transformer is power-
ful  for  processing  sequence  information,  utilizing  a  self-
attention mechanism instead of the recurrent neural net-
work  (RNN)  structure  commonly  used  in  natural  lan-
guage  processing  tasks [12].  However,  previous  Trans-
former  models  are  generally  used  for  sequence-to-se-
quence regression,  making them unsuitable for DTI pre-
diction.  The  TransformerCPI  model [13],  modified  based
on the Transformer for DTI prediction tasks, has achieved
promising  results  by  training  protein  sequences  as  text.
However,  on  one  hand,  the  encoder  integrates  one-di-
mensional  convolutional  neural  networks  and  gated
units.  Further  work  is  needed  to  improve  convolutional
neural  networks  for  sequence  tasks,  such  as  using  RNN,
long  short-term  memory  (LSTM),  and  other  models  tar-
geting  sequence  tasks [14].  On  the  other  hand,  the  Trans-
formerCPI  model  focuses  solely  on  compound-protein
interaction  prediction,  which  does  not  apply  to  TCM
tasks.

As summarized, we propose a TCM herb-target inter-
action  (TCMHTI)  model  to  predict  potential  targets  of
QFJBD  in  treating  RA  and  conduct  enrichment  analysis
using  the  predicted  targets  to  investigate  the  network
pharmacological mechanisms of QFJBD in RA treatment. 

2 Materials and methods

Inspired  by  the  TransformerCPI  model,  this  study  pro-
poses  the  TCMHTI  model,  an  improved  version  of  the
Transformer, to extract features from the 23-dimensional
herb vectors and target sequences and predict their inter-
actions.  Then,  protein-protein  interaction  (PPI)  analysis
was  performed  on  the  positively  interacting  targets  pre-
dicted  by  TCMHTI,  and  potential  core  targets  were
screened  based  on  degree  values.  To  further  explore  the
mechanism of QFJBD in treating RA and validate the su-
periority  of  the  TCMHTI  method,  enrichment  analysis
was  conducted  on  the  targets  predicted  by  the  TCMHTI
model.  Subsequently,  the classical  network pharmacolo-
gy method was used to screen the intersection targets  of
QFJBD herb components acting on RA. Enrichment anal-
ysis was also performed on these intersection targets. The
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results  of  both  analyses  were  compared  and  analyzed,
supplemented  by  molecular  docking  and  literature  vali-
dation of the accuracy of TCMHTI-predicted targets. 

2.1 Dataset preparation

Data  on  herbs,  compounds,  and  targets  were  collected
from the Traditional Chinese Medicine Systems Pharma-
cology  Database  and  Analysis  Platform  (TCMSP;
http://www.tcmsp-e.com)  and  the  Traditional  Chinese
Medicine  Integrated  Database  (TCMID; http://www.
megabionet.org/tcmid/). The data were filtered based on
oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥
0.18 [15].  Herb-target  pairs  collected  from  TCMSP  and
TCMID  were  used  as  the  positive  sample  set  for  this
study.  The  negative  sample  set  was  generated  using  the
following methods. First, the herb-target pairs in the posi-
tive  sample  set  were  separated,  and  duplicates  were  re-
moved.  Second,  herbs  and  targets  were  randomly  re-
paired,  and  duplicate  pairs  in  the  positive  sample  set
were  eliminated.  Third,  approximately  1.5  times  the
number  of  positive  sample  pairs  was  randomly  selected
to  form  the  negative  sample  set.  The  positive  and  nega-
tive sample sets were randomly shuffled and combined to
create  the  total  training  dataset  for  this  study.  RA  target
data  were  retrieved  from  DisGeNET  (score_gda ≥ 0.5)
and  GeneCards  (relevance_score ≥ 40)  databases  using
“rheumatoid arthritis” as the keyword. Subsequently, the
predicted targets were combined in a whole permutation
with  the  five  herbs  of  QFJBD,  forming  a  dataset  of  herb-
target interactions. In total, two datasets were collected: a
training  dataset  for  TCMHTI  model  development  and  a
prediction  dataset  for  target  identification  using  the
trained model. The data are shown in Table 1.

 

Table 1   Herb-target interactions dataset

Dataset Herb Target Interaction Positive Negative

Training 803 4 049 54 391 22 274 32 117

Prediction 5 57 285 null null
 

2.2 TCMHTI model architecture

The  TCMHTI  model  maintains  the  encoder-decoder
structure  of  the  Transformer  as  shown  in Figure  1.  Two
types of inputs are included in the TCMHTI model: target
vectors  and  herb  vectors.  For  targets,  amino  acid  se-
quences were collected and mapped to low-dimensional
real-valued  target  feature  vectors  using  the  Word2Vec
model [16]. Specifically, the amino acid sequences were di-
vided into multiple 3-gram sequences. With these 3-gram
sequences,  we  formed  a  precursor  library,  which  was
trained into word vectors using Word2Vec. Negative sam-
pling  was  used  in  training  the  word  vector  representa-
tions,  and  the  following  objective  function  was  used  in
the calculation:

arg maxθ
∏

(w, c)∈D

p(D = 1|c,w;θ)
∏

(w, c)∈D′
p(D = 0|c,w;θ) (1)

p(D = 1|c,w;θ)

p(D = 0|c,w;θ)
p(D = 1|w,c;θ)

where (w, c)  represents  the set  of  all  word-context  pairs.
D is  the  positive  sample  training  dataset,  and D′  is  the
negative  sample  training  dataset.  is  the
probability that (w, c)  pairs came from the training data.

 is  the probability that (w, c)  did not come
from  the  training  data.  The  probability  is
defined by  applying a  sigmoid function to  the  word vec-
tors.

p(D = 1|w,c;θ) = 1/(1+ e−vc×vw) (2)
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Figure 1   TCMHTI model architecture diagram
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vc

vw

In  this  context,  the  parameter θ represents  the  word
vectors we trained within the optimization framework. 
and  are the vector representations of the context c and
the word w,  respectively. In training the embedding vec-
tors, we set each 3-gram as a 100-dimensional vector.

For  herbs,  their  attributes  such  as  Siqi  (四 气 ,  four
natures),  Wuwei  (五 味 ,  five  flavors),  and  toxicity  were
measured  using  exponential  quantitative  scales.  Exam-
ples  of  partial  herb  vectors  are  shown  in Table  2.  In  the
TCMHTI  encoder,  the  multi-head  self-attention  mecha-
nism  layer  was  replaced  with  a  bidirectional  long  short-
term  memory  (Bi-LSTM)  network [14].  This  modification
reduced the model’s complexity, making it more suitable
for the small to medium-sized herb-target datasets in this
study.  Moreover,  Bi-LSTM  performed  excellently  in  pro-
cessing sequence data and effectively prevented gradient
vanishing  and  exploding  compared  with  other  RNN
models.

Hi

For  the  decoder,  position  embedding  and  masking
operations  irrelevant  to  the  DTI  prediction  task  were  re-
moved, but the multi-head self-attention mechanism lay-
er  remained.  The  multi-head  self-attention  mechanism
layer  is  a  key  technical  component  of  the  Transformer.
The input sequence is represented as three matrices: the
query matrix (Q), the key matrix (K), and the value matrix
(V). If  is assumed as the input sequence, the matrices
are represented as follows:

Qi =WQHi (3)

Ki =WKHi (4)

Vi =WV Hi (5)

WQ WK WV, ,  and  are  the  weight  matrices  for  query,
key, and value, respectively.

SiThen,  a  score  matrix  can  be  obtained,  which  indi-
cates the relevance of each query to each key by calculat-
ing the dot product between the query matrix and the key
matrix:

Si = QiKi
T (6)

ZiFollowing that, the self-attention output matrix  can
be  obtained  by  normalizing  the  score  matrix S and

weighting it with the value matrix value:

Zi = softmax(Si/
√

dk) ·Vi (7)

dk  is  the  dimension  of  the  key  matrix.  The  softmax
function  normalizes  each  score  into  a  probability  distri-
bution,  which  is  then  multiplied  by  the  value  matrix  to
obtain the output matrix.

T

T ′

Hi

T ′

xi

The  vectorized  target  was  input  into  the  encoder
and processed through the Bi-LSTM layer to get a feature-
enriched target feature vector . Subsequently, the herb
vector  was an input into the decoder and entered the
multi-head  self-attention  layer  with  the  target  feature
vector  to  extract  interaction  information  between  the
herb  and  the  target.  The  decoder  outputted  an  interac-
tion feature vector , and the norm of the vector was cal-
culated:

x′i = ∥xi∥22 (8)

The  weight  of  each  vector  can  be  calculated  by  the
softmax as follows:

αi = exp
(

x′i
)/ a∑

i=1

exp
(

x′i
)

(9)

a
yi

x′i αi

 represents the number of vectors. The final interac-
tion  feature  vector  is  calculated  through  the  weighted
sum of the interaction vector  and the vector weight :

yi =

a∑
i=1

αix′i (10)

Finally,  the  output  passed  through  a  fully  connected
layer to generate the prediction result.  As this is a binary
classification  task,  a  binary  cross-entropy  loss  function
was employed to train the model, formulated as follows:

Lossi = −[yilogŷi+ (1− yi)log(1− ŷi)] (11)

The model  prediction results  were classified into two
categories:  1  for  interaction  and  0  for  no  interaction.
Herb-target pairs with predicted scores ≥ 0.5 were classi-
fied as interacting (positive), while those with scores < 0.5
were considered non-interacting (negative). 

 

Table 2   Examples of herb vectors

Herb Herb vector

Baishao (Paeoniae Radix Alba) [0.5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]

Fuzi (Aconiti Lateralis Radix Praeparata) [0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2]

Huangqi (Astragali Radix) [0, 0, 0.5, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

Mudanpi (Moutan Cortex) [0.5, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0]

Qingfengteng (Sinomenii Caulis) [0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]

The 23-dimensional vectors from left to right represent: cold, hot, warm, cool, neutral, sour, bitter, sweet, pungent, salty, lung,

pericardium, heart, large intestine, triple energizer, small intestine, stomach, gallbladder, bladder, spleen, liver, kidney, and toxicity.

These attributes are described with modifying words to indicated their degree; for example, “slightly cold” “cold” and “very cold” are

represented as 2-1 (0.5), 20 (1), and 21 (2), respectively. If the attribute is absent, it is denoted by 0. The Guijing (归经, meridian tropism)

attribute is binary quantified, with 1 indicating the presence of the attribute and 0 indicating its absence.
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2.3 Model training and target prediction

The  herb-target  training  dataset  was  constructed  based
on the data collected in Section 2.1 and randomly split in-
to training (43 513 pairs), validation (5 439 pairs), and test
(5 439 pairs) sets according to an 8 :  1 :  1 ratio. As shown
in Figure  2,  the  impact  of  various  hyperparameters  was
tested  on  the  model’s  performance.  Among  them,  the
learning rate and batch size are the top two hyperparam-
eters  that  most  significantly  affect  the  model’s  perfor-
mance.  By  adjusting  these  two  parameters  and  using
5-fold  cross-validation  with  the  area  under  the  receiver
operating  characteristic  curve  (AUC)  as  the  metric,  the
results  are  illustrated  in Figure  3.  We  found  that  AUC
had  reached  its  maximum  value  when  the  learning  rate
was 0.000 1 and  the  batch  size  was  64.  All  the  hyperpa-
rameters of TCMHTI are summarized in Table 3.
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Figure  2   The  impact  of  different  hyperparameters  on
model performance
A,  hidden  size  of  Bi-LSTM.  B,  hidden  size  of  decoder.  C,  train-
ing epoch. D, number of  encoder layers.  E,  number of  decoder
layers. F, number of attention heads.
 

Classical  binary  classification  evaluation  metrics,
including  the  AUC,  the  precision-recall  curve  (PRC),
and accuracy, were used to assess model performance [17].
Then,  the  TCMHTI  model  was  compared  with  various
machine  learning  and  deep  learning  models,  such  as
support  vector  machines  (SVM) [18],  L2-logistic  (L2)  re-
gression [19],  k-nearest  neighbors  (KNN) [20],  random

forests  (RF) [21],  and  TransformerCPI [13].  Based  on  the
completed  model  training,  the  collected  QFJBD-target
prediction set  was input into the TCMHTI model  to pre-
dict the interaction relationships between QFJBD and RA
targets. 

2.4 Network pharmacology analysis
 

2.4.1 Screening  of  intersection  targets　RA  targets  were
screened  from  DisGeNET  (score_gda ≥ 0.1; https://dis-
genet.com/)  and  GeneCards  (relevance_score ≥ 10;
https://www.genecards.org/)  websites.  QFJBD  herb-tar-
gets  were  collected  from  TCMSP.  The  intersection  of  RA
and  QFJBD  targets  was  identified  as  the  targets  through
which QFJBD acts on RA. It is noteworthy that in Section
2.1,  we  adopted  more  stringent  criteria  (DisGeNET:
score_gda ≥ 0.5;  GeneCards:  relevance_score ≥ 40)  to
screen  RA  targets  for  the  TCMHTI  method.  This  is  be-
cause when classical network pharmacology methods ap-
plied  the  same  screening  criteria  as  TCMHTI,  only  10
overlapping  targets  were  obtained  after  intersecting  the
screened  RA  targets  with  QFJBD  targets.  An  insufficient
number of  targets (only 10) for Gene Ontology (GO) and
Kyoto  Encyclopedia  of  Genes  and  Genomes  (KEGG)  en-
richment analysis would lead to unreliable results. There-
fore,  classical  network pharmacology methods appropri-
ately lowered the screening criteria in RA target selection
to avoid overlooking potential targets. 
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Figure 3   AUC heatmap for learning rate and batch size

 

Table 3   Hyperparameters of the TCMHTI model

Hyperparameter Optimal value

Dimension of herb vectors 23

Dimension of target vectors 100

Number of attention heads 8

Number of encoder/decoder layers 3

Hidden size of decoder 64

Hidden size of Bi-LSTM 128

Batch size 64

Learning rate 0.000 1

Training epoch 100
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2.4.2 PPI network analysis　The targets predicted by the
TCMHTI  model  in  Section  2.3  and  the  intersection
targets screened in Section 2.4.1 were separately upload-
ed  to  the  Search  Tool  for  the  Retrieval  of  Interacting
Genes/Proteins  (STRING)  database.  The  species  was
set  to “Homo  sapiens”,  and  the  minimum  interaction
threshold was set to “medium confidence” (0.4) to obtain
PPI  relationships.  The  results  were  imported  into  Cy-
toscape  software  (v3.7.1)  for  PPI  network  development
and topological  parameter analysis.  Targets  were ranked
based  on  degree  values  in  descending  order  to  identify
the core targets. The core targets predicted by the model
were  compared  with  those  from  the  intersection  of  tar-
gets. 

2.4.3 GO function and KEGG pathway enrichment anal-
ysis　To  explore  the  mechanisms  of  action  of  TCMHTI-
predicted  targets  in  the  treatment  of  RA  with  QFJBD,
and  to  verify  the  superiority  of  the  TCMHTI  model  over
the  classical  network  pharmacology  approach,  both
the  intersection  targets  from  Section  2.4.1  and  the
TCMHTI-predicted  targets  were  subjected  to  GO  and
KEGG enrichment analysis using the Database for Anno-
tation,  Visualization,  and  Integrated  Discovery  (DAVID)
database.  Statistically  significant  terms  were  identified
with  a  threshold  of P value  <  0.05.  The  top  10  entrie
ranked  by P value  in  ascending  order  were  selected  to
generate  GO  bar  charts  and  KEGG  bubble  charts  by  a
bioinformatics  platform  (https://www.bioinformatics.
com.cn/).  Then,  the  results  of  both  methods  were  com-
pared. 

2.5 Model interpretation

Although deep learning was recognized as a black-box al-
gorithm, the visualization experiments were conducted to
explain the decision-making process of the model. Gradi-
ent-weighted  class  activation  mapping  (Grad-CAM)  was
used  to  visualize  the  decision-making  process  of  deep
learning models [22]. It generated an attention map by cal-
culating the gradient of the target class, showing the fea-
ture regions that the model focused on when making pre-
dictions.  In  our  experiments,  we  focused  on  which  herb
attributes had the greatest impact on the model’s predic-
tions  of  herb-target  interactions.  For  each  herb-target
pair,  the gradient values of the model’s predicted proba-
bility with respect to the input attribute features were cal-
culated.  Larger  absolute  gradient  values  indicated  a
stronger  contribution  of  the  corresponding  attribute  to
the  prediction.  Subsequently,  the  positive  group  (herb-
target pairs predicted to interact) and the negative group
(non-interacting  pairs)  were  statistically  compared  by
calculating  the  average  gradient  importance  scores  for
each  attribute  within  both  groups.  Finally,  differences  in
critical  attributes  were  intuitively  visualized  through  bar
charts. 

2.6 Molecular docking and literature validation

Based on the results from Sections 2.3 and 2.4, we identi-
fied  the  core  targets  predicted  by  TCMHTI  and  their
associated  signaling  pathways.  The  main  active  compo-
nents  of  the five  herbs  in  QFJBD were identified by con-
sulting  the Pharmacopoeia of  the  People’s  Republic  of
China  2020 [23].  Molecular  docking  experiments  were
conducted  between  these  components  and  core  targets
using AutoDock v4.2.6, with binding affinity as the prima-
ry  evaluation  metric.  A  docking  score ≤ – 5.0  kcal/mol
was  considered  indicative  of  strong  binding  activity,
based on established criteria for  ligand-receptor interac-
tions [24].  Additionally,  to  validate  the  accuracy  of
TCMHTI  predictions,  we  systematically  reviewed  rele-
vant  literature  to  identify  wet-lab  experimental  evidence
demonstrating  that  the  active  components  predicted  by
TCMHTI bind to target proteins and exert therapeutic ef-
fects on RA. The overall research workflow is illustrated in
Figure 4.
  

Overall workflow

1. Data collection 2. Target prediction

TCMHTI

4. Molecular docking and
literature validation

TNF-α、IL-1β、IL-6、IL-10

IL-17A、CD40、CTLA4

IL-4、STAT3

3. Comparison and analysis

GO

KEGG

Network
pharmacology

A BQFJBD QFJBD RA

81164146

Target of RA
BS

QFT

FZHQ

MDP

TCMSP

TCMID

GeneCards

DisGeNET

 
Figure 4   Overall workflow of the TCMHTI model devel-
opment and validation for predicting herb-target interac-
tions in QFJBD treatment of RA
Step  1,  collection  of  herb  and  target  data.  Step  2,  two  methods
for  predicting  targets  of  QFJBD  in  treating  RA.  A,  prediction  of
relevant targets using the TCMHTI model.  B, screening of rele-
vant  targets  through  network  pharmacology.  Step  3,  compari-
son  and  analysis  of  GO  and  KEGG  results  from  both  methods.
Step 4,  molecular  docking and literature  validation of  core  tar-
gets predicted by the TCMHTI model. 

3 Results and analysis
 

3.1 Performance comparison between the TCMHTI mod-
el and other models

The  performance  of  the  trained  TCMHTI  model  was
compared  with  other  machine  learning  models,
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demonstrating  observable  advantages.  The  TCMHTI
model achieved an AUC of 0.883, PRC of 0.849, and accu-
racy  of  0.818. Table  4 presents  the  results  of  the  model
comparison.  The  results  indicate  that  traditional  ma-
chine  learning  models  were  significantly  inferior  to  the
deep  learning  models  TransformerCPI  and  TCMHTI  in
terms  of  AUC,  PRC,  and  accuracy.  The  feature  learning
capabilities  of  deep  learning  were  more  effective  than
machine learning techniques. Furthermore, the TCMHTI
model  proposed  in  this  study  showed  notable  improve-
ments  in  performance  over  the  TransformerCPI  model,
which  was  also  an  upgrade  of  the  original  Transformer.
The  enhancement  of  the  Bi-LSTM  layer  in  TCMHTI
showed a more robust ability to extract information from
sequences than the one-dimensional convolutional layer
in TransformerCPI.

 
 

Table 4   Comparison of the performance of the different
models on the TCM-target dataset

Model AUC PRC Accuracy

SVM 0.500 0.418 0.581

L2 0.538 0.443 0.595

KNN 0.783 0.664 0.788

RF 0.794 0.690 0.807

TransformerCPI 0.869 0.830 0.808

TCMHTI 0.883 0.849 0.818
  

3.2 Prediction results of the TCMHTI model

Among the 285 herb-target pairs in the QFJBD prediction
set, the TCMHTI model predicted 120 pairs with positive
interactions  and  165  pairs  with  negative  interactions.  A
network  diagram  was  constructed  with  the  120  positive
interactions of herb-target pairs, resulting in 49 predicted
targets (Figure 5).

 
 

 
Figure  5   TCMHTI-predicted  TCM-target  positive  inter-
action network map
Yellow  nodes  represent  herbs,  while  blue  nodes  denote  target
proteins. 

3.3 Results of network pharmacology comparison
 

3.3.1 Intersection  targets  of  QFJBD and RA　A  total  of
875  RA  targets  were  collected,  and  210  targets  of  QFJBD
were  obtained  from  TCMSP.  The  intersection  of  the  RA
target set and QFJBD target set yielded 64 common targets. 

3.3.2 Results  of  PPI  network  analysis　 The  49  targets
predicted  by  the  TCMHTI  model  were  uploaded  to  the
STRING  database  for  PPI  network  analysis.  The  results
were then imported into Cytoscape software v3.7.1 for vi-
sualization (Figure 6). After removing isolated nodes, the
PPI network consisted of 42 nodes and 419 edges with an
average degree of  17.8.  Based on the PPI  network analy-
sis,  we  identified  the  top  9  targets  as  core  targets  due  to
their  significantly  higher  degree  values  compared  with
other  targets.  A  notable  drop  in  degree  values  was  ob-
served starting from the 10th target, supporting our selec-
tion  of  9  core  targets,  namely  tumor  necrosis  factor
(TNF)-α, interleukin (IL)-1β, IL-6, IL-10, IL-17A, cluster of
differentiation 40 (CD40), cytotoxic T-lymphocyte associ-
ated  protein  4  (CTLA4),  IL-4,  and  signal  transducer  and
activator of transcription 3 (STAT3). These targets are hy-
pothesized to be the core targets of QFJBD in treating RA.

 
 

 
Figure 6   PPI network of predicted targets from TCMHTI
The color intensity represents the degree values in the network,
with darker colors indicating higher degrees.
 

The  64  intersection  targets  screened  by  classical  net-
work  pharmacology  were  also  subjected  to  PPI  network
analysis.  The  top  9  targets  by  degree  value  were  com-
pared  with  the  core  targets  predicted  by  the  model.  The
comparison  revealed  significant  differences  between  the
two sets of targets, with only three common targets: TNF-
α, IL-6, and IL-1β. Notably, the three common targets cor-
respond  to  the  top  three  targets  by  degree  value  in  the
model-predicted core targets. 
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3.3.3 Results  of  comparative  analysis  of  GO and KEGG
enrichment　 GO  enrichment  analysis  of  the  49  targets
predicted  by  the  TCMHTI  model  revealed  that  these
targets  are  primarily  involved  in  biological  processes
such as cellular response to lipopolysaccharide, immune
response,  inflammatory  response,  regulation  of  inflam-
matory  cytokine  expression,  and  regulation  of  NF-κB
transcription  factor  activity  (Figure  7).  In  contrast,  GO
enrichment  analysis  of  the  intersection  targets  screen-
ed  by  classical  network  pharmacology  showed  the

involvement in biological processes, including inflamma-

tory  response,  cellular  response  to  lipopolysaccharide,

regulation  of  gene  expression,  regulation  of  apoptosis

process,  and  regulation  of  transcription  from  RNA  poly-

merase II promoter. Compared with the TCMHTI model,

the classical approach lacked processes such as immune

response, regulation of IL-6 expression, and regulation of

NF-κB  transcription  factor  activity,  which  have  been

proven to be closely related to RA [25].
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Figure 7   Histogram of GO enrichment analysis and Bubble plot of KEGG enrichment analysis
A, GO enrichment analysis of targets predicted by TCMHTI model. B, GO enrichment analysis of targets from network pharmacology
screening.  C,  KEGG  enrichment  analysis  of  targets  predicted  by  TCMHTI  model.  D,  KEGG  enrichment  analysis  of  targets  from  net-
work pharmacology screening.
 

The  results  of  the  comparison  of  KEGG  enrichment
analysis  showed  that  pathways  ranked  by  ascending P
value  for  the  64  intersection  targets  identified  through
classical  network  pharmacology,  including  fluid  shear
stress and atherosclerosis,  advanced glycation end prod-
ucts-receptor for advanced glycation end products (AGE-
RAGE)  signaling  pathway  in  diabetic  complications,
pathways  in  cancer,  Chagas  disease,  toxoplasmosis,  Ka-
posi sarcoma-associated herpesvirus infection, and leish-
maniasis, which have weak associations with RA. In con-
trast,  the  top-ranked  pathways  involving  targets  predict-
ed by TCMHTI included RA, inflammatory bowel disease,
cytokine-cytokine  receptor  interaction,  T  helper  17
(Th17) cell differentiation, and NF-κB signaling pathway.

The  study  also  found  that  signaling  pathways  such  as
IL-17 and TNF were common to  both methods,  suggest-
ing that these might be the key signaling pathways for the
treatment of RA (Figure 7). 

3.4 Interpretation of the TCMHTI model

We  chose  Fuzi  (Aconiti  Lateralis  Radix  Praeparata)  and
Qingfengteng  (Sinomenii  Caulis)  from  QFJBD  as  exam-
ples. As illustrated in Figure 8, the gradient weights were
mapped to the 23-dimensional features of the herbs. For
different  herb-target  pairs,  the  model  focused  on  differ-
ent  herb  features  and  correctly  categorized  herb-target
pairs into interaction and non-interaction categories. For
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example,  in  herb-target  pairs  with  interactions  (Fuzi-
CTLA4), the model noticed more herb features compared
to  herb-target  pairs  without  interactions  (Fuzi-CD28).
The  TCMHTI  model  correctly  captured  the  effect  of  the
23-dimensional  features  of  herbs  on  the  prediction  re-
sults. This information is helpful in optimizing the model
and  informing  the  understanding  of  the  relationship
between  the  23-dimensional  features  of  herbs  and  their
targets. 

3.5 Results of molecular docking and literature validation

Based  on  the Pharmacopoeia of  the  People’s  Republic  of
China  2020 [23],  we  systematically  retrieved  the  active
components of the five herbs in QFJBD. Key components,
including  paeoniflorin,  paeonol,  sinomenine,  astragalus
polysaccharide,  calycosin-7-glucoside,  and  aconitine,
were  identified.  For  each  herb,  one  to  two  components
were selected based on their  high abundance and docu-
mented pharmacological relevance, ensuring both repre-
sentativeness  and  therapeutic  utility.  Molecular  docking
was  then  performed  between  these  active  components
and the nine core targets predicted by the TCMHTI mod-
el using AutoDock. The binding energies calculated were
recorded  (Table  5),  and  the  docking  results  were  subse-
quently  visualized  (Figure  9).  The  results  showed  that
most of the key active components of QFJBD bind well to
the core targets.

The results of Section 3.3.3 indicated that most of the
top  10  signaling  pathways  screened  by  classical  network
pharmacology are unrelated to RA. Specifically, the path-
ways identified as unrelated include fluid shear stress and
atherosclerosis [26],  AGE-RAGE  signaling  pathway  in
diabetic  complications [27],  cancer  pathways [28],  Chagas

disease (American trypanosomiasis) [29], toxoplasmosis [30],
Kaposi’s sarcoma-associated herpesvirus infection [31], and
leishmaniasis [32].  While  these  pathways  are  significant
within  their  respective  contexts,  they  are  not  directly
correlated  with  the  pathogenesis  of  RA.  In  contrast,  the
top  10  signaling  pathways  predicted  by  the  TCMHTI
model include RA, inflammatory bowel disease, cytokine-
cytokine  receptor  interaction,  Th17  cell  differentiation,
and  NF-κB  signaling  pathway.  Previous  study  reveals
that  RA  and  inflammatory  bowel  disease  are  both  au-
toimmune  diseases  with  similar  pathogenesis  mecha-
nisms,  involving  complex  interactions  among  immune
inflammation,  gut  microecology,  and  genetic  factors [33].
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Figure 8   Gradient weights of 23-dimensional features of
the herbs
The feature index represents the 23-dimensional features of the
herbs.  A,  Fuzi  (Aconiti  Lateralis  Radix  Praeparata)  interacting
with CTLA4. B, Fuzi (Aconiti Lateralis Radix Praeparata) not in-
teracting with CD28.  C,  Qingfengteng (Sinomenii  Caulis)  inter-
acting with CD40. D, Qingfengteng (Sinomenii Caulis) not inter-
acting with CCL2.

 

Table 5   Molecular docking binding energy of key active
components and corresponding core targets

Component-target Binding energy
(kcal/mol)

Paeoniflorin–TNF-α – 8.4

Paeoniflorin–IL-4 – 7.2

Paeoniflorin–STAT3 – 6.5

Paeoniflorin–IL-10 – 7.0

Paeonol–IL-1β – 4.2

Paeonol–IL-6 – 4.9

Sinomenine–CD40 – 7.2

Sinomenine–IL-17A – 6.7

Astragalus polysaccharide–IL-6 – 5.5

Astragalus polysaccharide–TNF-α – 6.2

Calycosin-7-glucoside–IL-10 – 5.2

Aconitine–CTLA4 – 6.7

 

A B C

D E F

G H I

J K L

 
Figure 9   Molecular docking visualization of active com-
pounds from QFJBD with core RA targets
A,  paeoniflorin–TNF-α.  B,  paeoniflorin–IL-4.  C,  paeoniflorin–
STAT3. D, paeoniflorin–IL-10. E, paeonol–IL-1β. F, paeonol–IL-6.
G,  sinomenine–CD40.  H,  sinomenine–IL-17A.  I,  astragalus
polysaccharide–IL-6. J, astragalus polysaccharide–TNF-α. K, ca-
lycosin-7-glucoside–IL-10. L, aconitine–CTLA4.
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In  RA,  the  overproduction  of  various  cytokines  leads  to
exacerbated  inflammatory  responses  and  tissue  damage
of  the  joints.  One  approach  to  treating  RA  is  to  alleviate
inflammation  by  inhibiting  pro-inflammatory  factors
such  as  IL-1β or  blocking  their  receptors  [25].  Th17  cells
produce  a  spectrum  of  pro-inflammatory  cytokines,  in-
cluding  IL-17,  IL-6,  and  TNF-α,  which  are  essential  fac-
tors in the immunopathogenesis of RA [34]. The NF-κB sig-
naling pathway was key in chondrocyte inflammatory re-
sponses, leading to progressive extracellular matrix dam-
age and cartilage destruction [35].  The two common path-
ways,  IL-17  and  TNF  signaling  pathways,  are  hypothe-
sized  to  be  critical  for  treating  RA.  The  IL-17  pathway  is
involved  in  the  pathogenesis  of  many  human  autoim-
mune and inflammatory diseases, including RA and pso-
riasis.  It  plays  a  key  role  in  the  destruction  processes
of  tissue  in  some  diseases,  such  as  bone  and  cartilage

erosion in RA [36].  The TNF signaling pathway could have

an  adverse  effect  on  certain  chemokines  and  growth

factors,  resulting  in  higher  expression  levels  of  TNF-α
in  RA  patients,  thereby  exacerbating  inflammatory  re-

sponses [37].

The  results  have  been  verified  by  previous  scholarly

findings, and they demonstrated that the molecular path-

ways  involved  in  the  targets  predicted  by  the  TCMHTI

model are more closely related to the process of RA, indi-

cating  that  the  TCMHTI  model  is  more  accurate  at  pre-

dicting  disease  targets  compared  with  classical  network

pharmacology  methods.  Further  literature  review  of

the  core  targets  predicted  by  the  TCMHTI  model  re-

vealed that the herbs of  QFJBD could treat RA and relat-

ed diseases through one or more of the nine core targets

(Table 6).
 
 

Table 6   Literature validation of QFJBD-target relationship

Herb Model Target Description

Baishao (Paeoniae Radix
Alba)

L929 cell TNF-α It shows the effects of TNF-α on L929 cells in vitro [38]

Kunming mice,
Munich-Wistar rats

STAT3, IL-10 It could regulate the STAT3 pathway on Munich-Wistar rats in
vivo and upregulate IL-10 on Kunming mice in vivo [39]

Kunming mice IL-4 It could increase the levels of IL-4 in Kunming mice in vivo [40]

Mudanpi (Moutan Cortex) Primary HFLS-RA cell,
DBA/1 mice

IL-1β, IL-6 It could inhibit cytokines levels of IL-1β and IL-6 on HFLS-RA
cells in vitro and DBA/1 mice in vivo [41]

Huangqi (Astragali Radix)

RSC-364, RA-FLS cell IL-6, TNF-α IL-6 and TNF-α were significantly decreased after Huangqi
(Astragali Radix) on RSC-364 and RA-FLS cells in vitro [42]

RAW 264.7 macrophage
cell

IL-10 IL-10 was evaluated after treating Huangqi (Astragali Radix) on
RAW 264.7 macrophage cells in vitro [43]

Fuzi (Aconiti Lateralis
Radix Praeparata)

Hepa1-6, C57BL/6 mice CTLA4 It modulated CTLA4 on Hepa1-6 cells in vitro and C57BL/6
mice in vivo [44]

Qingfengteng (Sinomenii
Caulis)

PBMCs cell CD40 Its effect on CD40 was validated on PBMCs cells in vitro [45]

SD rats, PBMCs cell IL-17A The effect of it on IL-17A was determined on SD rats in vivo and
PBMCs cells in vitro [46]

L929, mouse connective tissue fibroblast cell line L929. HFLS-RA, human fibroblast-like synoviocytes from RA patient. RSC-364, rat

synovial cell line 364. RA-FLS, RA fibroblast-like synoviocytes. RAW 264.7, murine macrophage cell line RAW 264.7. PBMCs, peripheral

blood mononuclear Cells. SD, Sprague-Dawley.

 
 

4 Discussion

To  explore  the  therapeutic  mechanisms  of  QFJBD  in
RA,  we  proposed  an  improved  TCMHTI  model  based
on  the  Transformer  architecture.  The  TCMHTI  model
was  then  used  to  predict  herb-target  interactions.  When
compared  with  several  traditional  machine  learning
methods  and  DTI  models  on  the  collected  herb-target
dataset, the TCMHTI model demonstrated significant ad-
vantages.

The  TCMHTI  model  predicted  nine  core  targets,  in-
cluding  TNF-α,  IL-1β,  IL-6,  IL-10,  IL-17A,  CD40,  CTLA4,
IL-4,  and  STAT3,  for  QFJBD  in  RA  treatment.  Research
has shown that TNF-α and IL-1β are crucial  in cell  dam-
age and inflammation in RA [47]. IL-17 functions as a pro-
inflammatory  cytokine  exacerbating  joint  damage  in

arthritis,  whereas IL-10 and IL-4 contribute to protective
immunoregulation that may limit bone erosion [48-50]. IL-6
can  stimulate  the  Th17  pathway,  leading  to  fibrosis  and
inflammatory  responses [51].  STAT3  signaling  propagates
inflammation and osteoclast  activity,  constituting a criti-
cal  therapeutic  target  for  preventing  joint  destruction  in
RA [52]. CD40 is involved in various pathological processes
of RA, including immune response, destruction of articu-
lar  cartilage  and  bone,  and  the  inflammatory  cytokine
network in synovial tissue [53]. CTLA4 is a protein receptor
on T cells that acts as an immune checkpoint, downregu-
lating  the  immune  system.  Blocking  CTLA4  significantly
affects several other cell types involved in RA pathophysi-
ology [54].

Unlike classical network pharmacology, which identi-
fied 64 targets with limited relevance to RA, the TCMHTI
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model  prioritized  disease-specific  signaling  pathways.
Only two overlapping pathways, IL-17 and TNF signaling
pathways,  were  shared,  and  both  are  recognized  as  key
signaling  pathways  for  treating  RA.  Further  validation  of
the  core  targets  predicted  by  the  TCMHTI  model,  based
on  literature,  demonstrated  that  QFJBD  can  treat  RA
through  these  core  targets.  Molecular  docking  results
demonstrated favorable binding affinities between active
components in QFJBD and the nine core targets, while lit-
erature  review  identified  wet-lab  experimental  evidence
supporting the RA-interventional effects of these compo-
nent-target  interactions,  thereby  validating  the  accuracy
of TCMHTI predictions through both computational and
empirical  approaches.  This  suggests  that  the  TCMHTI
model  exhibits  superior  accuracy  in  identifying  disease-
associated targets compared with classical network phar-
macology, thereby opening new avenues for mechanistic
exploration and therapeutic optimization of TCM in com-
plex diseases like RA.

However,  this  study also  has  several  limitations.  As  a
deep  learning  model,  TCMHTI  lacks  interpretability  and
cannot  explain  why  specific  herbs  interact  with  certain
targets. Additionally, the model is unable to predict inter-
actions  between  unknown  herbs  and  unknown  targets.
Although we validated our predictions through a compre-
hensive literature review, we recognize the importance of
conducting our own experimental validations to strength-
en our findings. In future work, we will optimize the mod-
el and conduct empirical  experiments to further validate
our results. 

5 Conclusion

This  study  used  the  TCMHTI  model  to  predict  potential
targets of QFJBD in treating RA. The network pharmacol-
ogy  analysis  of  the  TCMHTI-predicted  targets  indicates
that QFJBD may primarily exert its therapeutic effects on
RA  by  influencing  the  expression  of  target  proteins  such
as  TNF-α,  IL-1β,  and  STAT3.  These  findings  provide  a
novel  framework  for  bridging  traditional  herbal  knowl-
edge  with  precision  medicine,  offering  actionable  in-
sights for developing targeted TCM therapies against dis-
eases. 
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TCMHTI：基于 Transformer 的青附蠲痹汤治疗类风湿关节炎的
中药-靶点相互作用预测模型

梁振忠a, 丁长松a, b*

a. 湖南中医药大学信息科学与工程学院, 湖南 长沙 410208, 中国

b. 湖南中医药大学中医药大数据分析实验室, 湖南 长沙 410208, 中国

 
【摘要】目的  采用改进的 Transformer 模型预测青附蠲痹汤（QFJBD）治疗类风湿关节炎（RA）的潜在靶

点，探究 QFJBD 治疗 RA 的网络药理机制。方法  首先，构建基于 Transformer 改进的中药-靶点的相互作用

预测模型（TCMHTI）。采用受试者工作特征曲线下面积（AUC）、精确率-召回率曲线（PRC）和准确率三

项指标评价，将 TCMHTI 模型与基线模型进行性能比较。随后，基于预测靶点构建蛋白质-蛋白质相互作用

（PPI）网络，并根据度值排名确定前 9 个节点为核心靶点，利用 TCMHTI 预测靶点与网络药理学方法鉴定

的靶点分别进行基因本体论（GO）功能注释和京都基因与基因组百科全书（KEGG）通路富集分析，并将富集

分析结果进行对比。最后，通过分子对接和文献查阅对 TCMHTI 预测的核心靶点进行验证。结果  TCMHTI

模型的 AUC 值为 0.883，PRC 值为 0.849，准确率为 0.818，预测出 49 个 QFJBD 治疗 RA 的潜在靶点并筛选

出 9 个核心靶点：肿瘤坏死因子（TNF）-α、白细胞介素（IL）-1β、IL-6、IL-10、IL-17A、簇抗原分化簇

40（CD40）、细胞毒性 T 淋巴细胞相关抗原-4（CTLA4）、IL-4 及信号转导和转录激活因子-3（STAT3）。

富集分析显示，TCMHTI 模型预测出 49 个靶点，富集到更多与 RA 直接相关的通路；而经典网络药理学虽

得到 64 个靶点，但富集的通路与 RA 关联性较弱。分子对接显示 QFJBD 中的活性分子与 RA 靶点有良好的

结合能，而文献调研结果也显示了 QFJBD 可以通过 9 个核心靶点来治疗 RA。结论  TCMHTI 模型比网络药

理学方法具有更高的准确性，表明 QFJBD 主要通过影响 TNF-α、IL-1β、IL-6 等靶点及多个信号通路来发挥

对 RA 的治疗作用。本研究为传统中医药与精准医学相结合提供了一个新的框架，并为开发针对疾病的中医

靶向疗法提供了可行的见解。

【关键词】Transformer；青附蠲痹汤；类风湿关节炎；深度学习；网络药理学
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