
 
Analysis  on  pulse  features  of  coronary  heart  disease  patients  with  or  without  a
history of ischemic stroke

LI Xin†, LI Wei†, NG Man-In, PARRY Natalie Ann, LI Siqi, LI Rui, GUO Rui*

School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

 

A  R  T  I  C  L  E      I  N  F  O A  B  S  T  R  A  C  T
 

Article history
Received 28 July 2024
Accepted 05 September 2024
Available online 25 September 2024

 
 

Keywords
Pulse diagnosis
Coronary heart disease (CHD)
Ischemic stroke
Signal processing
Pattern recognition

 

Objective   To evaluate the capability of wrist pulse analysis in distinguishing three physiolog-

ical and pathological conditions: healthy individuals,  coronary heart disease (CHD) patients

without a history of ischemic stroke, and CHD patients with a history of ischemic stroke.

Methods   Study participants were recruited from Shuguang East Hospital, Yueyang Hospital

of Integrated Traditional Chinese and Western Medicine, and Shanghai Municipal Hospital of

Traditional  Chinese  Medicine,  affiliated  with  Shanghai  University  of  Traditional  Chinese

Medicine,  from  April  15  to  September  15,  2021.  They  were  categorized  into  three  groups:

healthy controls (Group 1), CHD patients without a history of ischemic stroke (Group 2), and

CHD patients with a history of ischemic stroke (Group 3). The wrist pulse signals of the study

participants  were  non-invasively  collected  using  a  pulse  diagnosis  instrument.  The  linear

time-domain  features  and  nonlinear  time-series  multiscale  entropy  (MSE)  features  of  the

pulse signals were extracted using time-domain analysis and the MSE methods,  which were

subsequently  compared  between  groups.  Based  on  these  extracted  features,  a  recognition

model was developed using a random forest (RF) algorithm. The classification performance of

the  models  was  evaluated  using  metrics,  including  accuracy,  precision,  recall,  and  F1-score

derived from confusion matrix as well as the area under the receiver operating characteristics

(ROC) curve (AUC).

Results   A total of 189 participants were enrolled, with 63 in Group 1, 61 in Group 2, and 65 in

Group  3.  Compared  with  Group  1,  Group  2  showed  significant  increases  in  pulse  features

H2/H1, H3/H1, W1, W2, and W2/T, and decreased in MSE1 – MSE7 (P < 0.05), while Group 3

showed significant increases in pulse features T5/T4, T, H1/T1, W1, W2, AS, and Ad, and de-

creased in MSE1 – MSE20 (P < 0.05). Compared with Group 2, Group 3 demonstrated notable

increases in H1/T1 and As (P < 0.05). The RF model achieved precision of 80.00%, 61.54%, and

61.54%,  recall  of  74.29%,  60.00%,  and  68.97%,  F1-scores  of  70.04%,  60.76%,  and  65.04%,  and

AUC  values  of  0.92,  0.74,  and  0.81  for  Groups  1,  2,  and  3,  respectively.  The  overall  accuracy

was 67.69%, with micro-average AUC of 0.83 and macro-average AUC of 0.82.

Conclusion   Differences in pulse features reflect variations in arterial compliance, peripheral

resistance,  cardiac  afterload,  and  pulse  signal  complexity  among  healthy  individuals,  CHD
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patients  without  a  history  of  ischemic  stroke,  and  those  with  such  a  history.  The  developed

pulse-based  recognition  model  holds  the  potential  in  distinguishing  between  these  three

groups, offering a novel diagnostic reference for clinical practice.

 

 

1 Introduction

Cardiovascular diseases, predominantly driven by athero-
sclerosis,  have  emerged  as  the  leading  cause  of  death  in
China.  This  condition  involves  the  narrowing  and  hard-
ening  of  blood  vessels  caused  by  cholesterol  deposition,
which can potentially affect all parts of the arterial vascu-
lar system. Two significant consequences of atherosclero-
sis are coronary heart disease (CHD) and ischemic stroke,
and there exists a notable degree of comorbidity between
them [1].  Patients  suffering  both  diseases  can  simultane-
ously  experience  severely  compromised  prognoses.  One
study  showed  that  43%  to  85%  of  patients  with  ischemic
stroke showed asymptomatic CHD, while 25% to 48% had
severe  CHD.  Furthermore,  ischemic  stroke  impacts  the
onset  and  progression  of  CHD [2].  A  study  by  DUCROCQ
et al. [3] that followed a total of 26 389 patients with CHD
for  four  years  demonstrated  that  a  history  of  ischemic
stroke  increased  the  risk  of  recurrent  cardiovascular
events among CHD patients. Consequently, early diagno-
sis and treatment of one of the co-existing diseases, when
patients  are  affected  by  both,  may  enhance  their  quality
of survival and long-term prognosis.  The most direct ap-
proach  for  detecting  atherosclerotic  disease  could  be
through examining vascular lesions [4]. Although there are
several  clinical  methods  for  the  detection  of  angiopathy,
such  as  angiography [5],  their  widespread  use  in  disease
prevention  and  monitoring  is  limited  by  factors  such  as
invasiveness, delayed results, high cost, or complex oper-
ational procedures. This necessitates the exploration of a
novel,  noninvasive and user-friendly  diagnostic  tool  that
can effectively identify the status of CHD patients, partic-
ularly  those  who  have  experienced  an  ischemic  stroke,
thereby  facilitating  more  precise  and  targeted  interven-
tions.

Traditional  Chinese medicine (TCM) has  long recog-
nized  the  profound  interconnection  between  the  heart,
brain, and blood vessels [6]. Within the holistic framework
of TCM, the human body is viewed as an integrated enti-
ty,  where  various  parts  harmoniously  coordinated  in
function,  remain  structurally  inseparable,  and  exhibit
pathologically  interdependence.  Blood  vessels  serve  as
the  carriers  for  the  functions  and  structures  of  both  the
heart  and  brain.  Optimal  cardiac  governance  of  blood
and  vessels  ensures  clear  passageways  and  unimpeded
blood  flow  to  the  brain,  thereby  facilitating  the  brain’s
role  in  regulating  the  consciousness.  Conversely,  the
heart’s function is also influenced by the brain, establish-
ing a bidirectional relationship. Therefore, the circulation

of blood is indispensable for the normal functions of both
the  heart  and  brain [7].  Disruptions  in  blood  flow  lead  to
inadequate supply of blood and Qi to heart and brain, as
a result of which cardiac and cerebral pathologies occur.
“Chest  impediment” and “ischemic  stroke” exemplify
such  occurrences,  coinciding  with  the  modern  medical
understanding of the pathogenesis of cardiovascular and
cerebrovascular diseases [8].

The consensus in modern medicine identifies athero-
sclerosis  as  the  primary  pathological  factor  underlying
these  conditions [9].  The  progression  of  vascular  lesions,
whether  in  CHD  or  ischemic  stroke,  unfolds  over  an  ex-
tended process. During the early or progressively worsen-
ing  stages  of  the  disease,  hemodynamic  parameters,  in-
cluding  vascular  elasticity,  blood  flow  inertia,  and  blood
pressure,  undergo  corresponding  alterations.  These
changes are  initially  manifested in pulse wave propagat-
ing  along  the  arterial  tree.  TCM  pulse-taking  offers  a
unique advantage in detecting the pulse wave at the radi-
al  artery,  providing  valuable  insights  into  the  confirma-
tion of cardiovascular conditions.

Thus, the objective of this study is to analyze the pulse
features  of  healthy  individuals,  patients  with  CHD  but
without  a  history  of  ischemic  stroke,  and  patients  who
have experienced an ischemic stroke, with the aim of elu-
cidating their physiological and pathological distinctions.
Additionally, we strive to investigate the effectiveness of a
model based on these pulse features for accurately distin-
guishing  the  distinct  groups.  Ultimately,  our  goal  is  to
provide  a  valuable  supplementary  tool  for  the  diagnosis
and early warning of these comorbid conditions, thereby
enhancing patients’ prognostic outcomes. 

2 Data and methods
 

2.1 Participants

This study recruited participants from April 15 to Septem-
ber 15, 2021, at three institutions affiliated with Shanghai
University  of  Traditional  Chinese  Medicine:  Shuguang
East Hospital, Yueyang Hospital of Integrated Traditional
Chinese and Western Medicine, and Shanghai Municipal
Hospital  of  Traditional  Chinese  Medicine.  Participants
were  categorized  into  three  groups:  healthy  controls
(Group  1),  CHD  patients  without  a  history  of  ischemic
stroke  (Group  2),  and  CHD  patients  with  a  history  of  is-
chemic  stroke  (Group  3).  All  data  were  obtained  with
written  informed  consent  from  the  participants  and
maintained  under  strict  confidentiality  protocols.  This
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study  was  approved  by  the  Ethics  Committee  of  Shang-
hai  Municipal  Hospital  of  Traditional  Chinese  Medicine
(2022SHL-KY-15). 

2.2 Diagnostic criteria

The diagnostic criteria for CHD referred to the guidelines
issued by the American College of Cardiology [10]. The di-
agnostic  criteria  for  ischemic  stroke  were  based  on  the
2018  Guidelines  for  the  Early  Management  of  Patients
with  Acute  Ischemic  Stroke  published  by  the  American
Heart  Association  and  the  American  Stroke  Associa-
tion [11]. 

2.3 Inclusion and exclusion criteria for healthy individuals
 

2.3.1 Inclusion criteria　(i)  Individual must have a good
health  status,  as  determined  by  physical  examination,
with no history of major illnesses or conditions that could
interfere with the study outcomes. (ii) Specific physiologi-
cal indicators (such as blood pressure, blood glucose, and
blood  lipids)  must  be  within  normal  ranges.  (iii)  Partici-
pants  must  be  aged  between  35  and  75  years.  (iv)  Com-
plete  basic  information  and  clinical  data  must  be  avail-
able  for  each  participant.  (v)  Individuals  must  demon-
strate  an  understanding  of  the  study  objectives  and  pro-
cedures  and  provide  written  informed  consent  prior  to
participation. 

2.3.2 Exclusion  criteria　 (i)  Individuals  with  severe
chronic diseases such as cardiovascular disease, diabetes,
cancer, or any other condition that could significantly im-
pact  the  study  outcomes.  (ii)  Individuals  who  have  un-
dergone  major  surgery  or  received  significant  treatment
within the past six months. (iii) Individuals with a known
history  of  drug  allergy  or  a  family  history  of  specific  dis-
eases  that  could  potentially  interact  with  the  study  out-
comes. (iv) Pregnant or breastfeeding women. 

2.4 Inclusion and exclusion criteria for CHD patients
 

2.4.1 Inclusion criteria　(i) Participants must have a con-
firmed diagnosis  of  CHD, with or  without a  history of  is-
chemic  stroke,  as  assessed  and  documented  by  a  quali-
fied cardiologist. (ii) Participants must be in good mental
health,  with  no  history  of  severe  mental  disorders,  and
capable  of  fully  cooperating  with  the  study  procedures,
including the collection process of clinical data. (iii) Par-
ticipants must be aged between 35 and 75 years. (iv) Com-
plete  basic  information  and  clinical  data  must  be  avail-
able  for  each  participant.  (v)  Participants  must  demon-
strate  an  understanding  of  the  study  objectives  and  pro-
cedures,  and  provide  written  informed  consent  prior  to
participation. 

2.4.2 Exclusion criteria　 (i) Patients with cardiovascular
disease other than CHD, including but not limited to aortic

stenosis, myocardial infarction, arrhythmias, or heart fail-
ure. (ii) Patients with malignant tumors, active infectious
diseases, or significant functional impairment of other or-
gans,  such  as  liver  dysfunction  and  kidney  dysfunction.
(iii)  Patients  with  a  history  of  percutaneous coronary  in-
tervention  (PCI)  or  coronary  artery  bypass  grafting
(CABG) prior to enrollment. (iv) Patients with significant
neurological  conditions affecting data collection,  includ-
ing  but  not  limited  to  dementia,  stroke  with  significant
cognitive  impairment,  or  other  cognitive  impairments
that interfere with study procedures. 

2.5 Data collection
 

2.5.1 General information collection　The general  infor-
mation  of  participants,  including  gender,  age,  height,
weight,  body  mass  index  (BMI),  systolic  blood  pressure
(SBP), diastolic blood pressure (DBP), past medical histo-
ry, and other relevant details were collected. BMI was de-
termined  according  to  the  formula:  BMI  =  weight  (kg)/
[height (m)]2. Blood pressure was measured with a sphyg-
momanometer. 

2.5.2 Pulse  signals  acquirement　 Participants  were  in-
structed  to  adopt  either  supine  or  sitting  position,  with
the  forearm  naturally  extended  forward  and  parallel  to
the  heart.  The  wrist  was  straightened  with  the  palm  fac-
ing  upwards  and  the  fingers  slightly  curved.  A  small  soft
pillow was placed under the wrist joint to enhance the de-
tection  of  pulse  signals  by  facilitating  the  flow  of  local
blood  through  the  wrist.  Prior  to  data  collection,  partici-
pants were required to remain stationary for a minimum
of 3 min to ensure physiological stability. For the acquisi-
tion  of  pulse  signals,  the  ZY-I  type  pulse  diagnostic  in-
strument  was  utilized,  with  focus  on  the  left  hand.  The
sampling frequency was set at 4 000 Hz, and the pulse sig-
nals under the optimal pressure section were selected for
subsequent  analysis  of  pulse  features.  This  method  al-
lowed  for  the  precise  capture  of  pulse  signals  for  further
analysis. 

2.6 Extraction of time-domain features from pulse signals

Pulse signals reflect the cardiac ejection activity and con-
vey  diverse  information  carried  by  pulse  waves  through
the  vascular  system.  Time-domain  analysis  primarily  in-
vestigates  the  relationship  between  the  amplitude  and
time of the waveform within a representative pulse signal
cycle.  This  method  extracts  key  characteristics  of  pulse
waves, such as the peak heights (H) and the correspond-
ing  times  (T),  as  illustrated  in Figure  1 [12].  Based  on  the
extracted peak and valley heights, as well as correspond-
ing times, time-domain features are calculated to explore
the  intrinsic  relationships  between  pulse  features  and
diseased  states.  The  pulse  features  are  presented  in
Table 1.
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To minimize the impact from manual operation dur-
ing  sampling,  this  study  selected  specific  time-domain
features  of  pulse  signals  for  further  analysis.  These  fea-
tures  include  proportion  features  (H2/H1,  H3/H1,
H4/H1,  H5/H1,  H1/T1,  T1/T,  T1/T4,  T4/T,  T5/T4,  W1/T,
and  W2/T),  time-related  features  (T,  W1,  and  W2),  and
area features (As and Ad).
 

2.7 Extraction of multiscale entropy from pulse signals

Multiscale entropy (MSE) extends the concept of sample
entropy to encompass multiple time scales [13]. The tradi-
tional sample entropy overlooks the potential insights of-
fered  by  analyzing  different  time  scales  within  a  given
time  series.  Multiscale  entropy  addresses  this  limitation
by  computing  sample  entropy  across  various  observa-
tional  scales,  enabling  a  more  detailed  analysis  of  pulse
signals and the extraction of additional information.

Like  other  sample  entropy  measures,  multiscale  en-
tropy serves as a valuable tool for assessing the complexi-
ty of time series data in medical research. Its fundamen-
tal  principle  involves  coarse  graining  the  time  series,  a
process that involves averaging different numbers of con-
secutive  data  points  to  generate  signals  at  distinct  scales
(resolutions). This approach facilitates the analysis of the
time series at progressively coarser temporal scales. As il-
lustrated in Figure 2 [14],  at  scale 1,  the input data are the
original  time  series.  At  scale  2,  the  coarse-grained  time
series  is  derived  by  averaging  every  two  consecutive
points  from the original  time series.  Similarly,  at  scale  3,
the coarse-grained time series is formed by averaging ev-
ery three consecutive points from the original time series,
and this pattern continues. For each respective scale, the
sample entropy value is calculated for the coarse-grained
time series at this specific scale.

  
Scale 1

Scale 2

Scale 3

x1

y1 y2 y3 yj 3

x1 x2 x3 x4 x5 x6 x7 x8 x9

x2 x3 x4 x5 x6 xi

xi xi+1

y1 y2 y3 yj 2
xi+xi+1

xi+xi+1+xi+2

xi+2

xi+1

 
Figure 2   The coarse-grained process of time series
x, original time series. y, coarse-grained time series.
 

The  MSE  values  provide  insights  into  the  complexity
of the time series at different temporal resolutions. High-
er entropy values indicate greater complexity, while low-
er  values  suggest  more  regularity  or  predictability  in  the
signal, making it a valuable tool for analyzing changes in
the complexity of  pulse signals at  various temporal reso-
lutions.  In  this  study,  we  employed  the  MSE  method  to
compute the sample entropy for each series at scale i (i =
1, 2,  …, 20),  designated as MSE1,  MSE2,  MSE3,  ...,  and up
to  MSE20.  We  applied  this  approach  to  three  distinct
groups  of  pulse  signals.  This  approach  enabled  us  to  ef-
fectively  compare  the  signal  complexity  across  the  three
groups. 

2.8 Statistical methods

Data analysis was performed using SPSS 25.0 to compare
pulse  features  and  general  information  among  the  three

 

H (g)

T (s)
T1 T2

T3
T4

T
T5

AdAs

H5

H4H3H2H1

W1

W2

 
Figure 1   One representative cycle of a pulse waveform

 

Table 1   Time-domain features of the pulse signal

Feature
type

Feature
parameter Feature name

Amplitude

H1 Main wave amplitude

H2 Main wave gorge amplitude

H3 Wave front dicrotic amplitude

H4 Dicrotic notch amplitude

H5 Dicrotic wave amplitude

W1 The width of main wave in its 1/3
height position

W2 The width of main wave in its 1/5
height position

Time

T1 Main wave phase

T2 Main wave gorge phase

T3 Wave front dicrotic phase

T4 Dicrotic notch phase

T5 Dicrotic wave phase

T Pulse cycle

Proportion

H2/H1 Main wave gorge to main wave
amplitude ratio

H3/H1 Wave front dicrotic to main wave
amplitude ratio

H4/H1 Dicrotic notch to main wave
amplitude ratio

H5/H1 Dicrotic wave to main wave
amplitude ratio

T1/T Main wave phase to pulse cycle
ratio

T1/T4 Main wave phase to dicrotic
notch phase ratio

T5/T4 Dicrotic wave phase to dicrotic
notch phase ratio

W1/T Pulse width to pulse cycle ratio

W2/T Pulse width to pulse cycle ratio

H1/T1 Main wave amplitude to main
wave phase ratio

Area
As Systolic area

Ad Diastolic area
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groups.  For  continuous variables  that  were not  normally
distributed,  the  Kruskal-Wallis H test  and  the  Nemenyi
test were employed for comparisons, with data represent-
ed as  the median [interquartile  range (IQR)],  denoted as
M  (Q1,  Q3).  For  continuous  variables  that  were  normally
distributed,  analysis  of  variance  (ANOVA)  was  used  for
comparisons,  with  data  represented  as  mean  ±  standard
deviation (SD).  Categorical  variables  were compared us-
ing the Chi-squared test and expressed as percentages. P <
0.05 was considered statistically significant. 

2.9 Establishment and evaluation of the model for three-
group distinction
 

2.9.1 Model establishment　Random forest (RF) is an en-
semble learning algorithm that combines multiple classi-
fication  decision  trees [15].  It  determines  final  classifica-
tion  outcome  through  a  voting  mechanism  by  aggregat-
ing  the  predictions  of  all  individual  decision  trees.  This
collective model  often exhibits  superior prediction accu-
racy compared with traditional classification models, and
has  therefore  been  widely  applied  in  bioinformatics,
medicine, and other fields [16].

In  this  study,  we  utilized  MATLAB  2015  (MathWorks
Inc.)  to  implement  the  RF  algorithm  and  to  develop  a
classification model. This model was built using a dataset
comprising  pulse  features  and  general  clinical  informa-
tion from participants, with the aim of accurately catego-
rizing  samples  into  Group  1,  Group  2,  and  Group  3.  To
enhance the model’s predictive accuracy and optimize its
training performance, we employed the synthetic minori-
ty  over-sampling  technique  (SMOTE) [17] prior  to  model
training to balance the sample size across groups. To en-
sure  the  objectivity  and  reliability  of  the  model,  we  con-
ducted  a  five-fold  cross-validation  on  the  dataset,  where
in  each  fold,  80%  of  data  was  randomly  assigned  as  the
training  set  for  model  training,  while  the  remaining  20%
was used as the testing set to validate the model’s predic-
tive performance. Through five rounds of iterative testing,
we calculated the average prediction accuracy to compre-
hensively evaluate its classification capability. 

2.9.2 Model evaluation　A confusion matrix was utilized
to  evaluate  the  performance  of  prediction  models  by
comparing the actual labels with the predicted ones. Key
performance  metrics  such  as  accuracy, precision, recall,
and F1-score were derived from this matrix to assess the
model. These metrics are defined as follows.

(i)  Accuracy. It  represents  the  ratio  of  the  number  of
correct  predictions  by  the  model  to  the  total  number  of
samples.

Accuracy =
Number of correct predictions

Total number of samples

(ii) Precision. It  indicates the proportion of true posi-
tive  predictions  among  all  positive  predictions  made  by

the model for a specific class X, it is calculated as:

Precision =
Number of true class X predictions

Total number of class X predictions by the model

(iii) Recall. It is the proportion of true positive predic-
tions out of all actual positive samples for a specific class
X, it is calculated as:

Recall =
Number of true class X predictions

Total number of actual class X samples

(iv) F1-score. This metric balances the model’s preci-
sion and recall for each class X and is computed as:

F1-score =
2× (Precision×Recall)

(Precision+Recall)

The  receiver  operating  characteristics  (ROC)  curve  is
a fundamental tool for evaluating the performance of bi-
nary  prediction  models.  A  key  metric  derived  from  the
ROC  curve  is  the  area  under  the  curve  (AUC),  which
quantifies the overall ability to distinguish between posi-
tive  and negative  classes.  An AUC value closer  to  1  indi-
cates a highly effective prediction model.

For  multi-class  classification  tasks  or  datasets  with
class  imbalance,  two  approaches  are  commonly  used  to
aggregate  ROC  performance:  micro-average  and  macro-
average.  Micro-average  ROC  assesses  model  perfor-
mance  by  combining  all  true  positives,  false  positives,
true  negatives,  and  false  negatives  across  all  classes,
treating  each  instance  equally.  Macro-average  ROC,  on
the other hand, evaluates each class separately by calcu-
lating  individual  ROC  curves  and  AUCs,  and  then  aver-
ages them, ensuring that each class contributes equally to
the final metric. This approach provides a more objective
view on the model’s overall performance.

In this study, we comprehensively evaluated the mod-
el’s  performance  using  a  range  of  metrics,  including  ac-
curacy, precision, recall,  and  F1-score.  Additionally,  we
assessed  the  model’s  classification  capability  using  the
ROC curve,  along with its  AUC, micro-average AUC, and
macro-average AUC. 

3 Results
 

3.1 Comparison  of  general  information  among  the  three
groups

A  total  of  235  participants  were  recruited  for  this  study.
However, only 189 remained following the inclusion and
exclusion criteria and were categorized into three groups:
Group  1  consisted  of  63  healthy  individuals,  Group  2
comprised 61 patients diagnosed with CHD but without a
history of ischemic stroke, and Group 3 included 65 CHD
patients with a history of ischemic stroke.

As  shown  in Table  2,  participants  in  Group  3  were
significantly  older  compared  with  Group  1  and  Group  2
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(P < 0.05), with the ages of participants in Group 2 being
older compared with Group 1 (P < 0.05). In addition, the
SBP  of  participants  in  Group  3  were  significantly  higher
compared  with  Group  1  (P <  0.05),  while  no  significant
differences were observed in other parameters examined
(P > 0.05).
 

3.2 Comparison of pulse features among the three groups

Statistical  analysis  was  conducted  on  the  time-domain
features  and  MSE  features  extracted  from  the  pulse  sig-
nals of participants in the three groups (Table 3 and 4).

Significant  differences  in  time-domain  features  were
observed  among  the  three  groups  (Table  3).  Compared
with Group 1,  Group 2 exhibited significantly higher val-
ues for pulse features H2/H1, H3/H1, W1, W2, and W2/T
(P <  0.05).  Similarly,  Group  3  demonstrated  significantly
elevated values for T5/T4, T,  H1/T1, W1, W2, As,  and Ad

(P <  0.05).  Moreover,  when  Group  3  compared  with
Group  2,  significantly  higher  values  were  observed  for
H1/T1 and As (P < 0.05).

Table 4 revealed that Group 3 had significantly lower
values  for  MSE1 to  MSE20 compared  with  Group  1  (P <
0.05).  Additionally,  Group  2  demonstrated  significantly
lower  values  for  MSE1 to  MSE7 compared  with  Group  1
(P < 0.05). 

3.3 Performance assessment of the prediction model

The RF model, constructed using datasets comprising the
pulse  time-domain  features,  MSE  features,  and  general
information, was comprehensively evaluated using a con-
fusion  matrix  and  ROC  curves.  Based  on  confusion  ma-
trix depicted in Figure 3A, the metrics of accuracy, preci-
sion,  recall,  and  F1-score  were  calculated  following  the
methodology outlined in Section 2.9.2. Additionally, ROC
curves were used to further assess the performance of the

 

Table 2   Comparison of general information among the three groups [n (%), mean ± SD]

Group
Gender

Age (year) BMI (kg/m2) SBP (mmHg) DBP (mmHg)
Male Female

1 27 (42.86) 36 (57.14) 50.85 ± 14.355 23.958 ± 2.757 127.82 ± 15.851 76.74 ± 12.653

2 23 (37.70) 38 (62.30) 61.89 ± 10.068▲ 24.021 ± 4.258 132.33 ± 15.323 79.15 ± 9.748

3 34 (52.31) 31 (47.69) 71.92 ± 8.303▲* 23.726 ± 2.830 137.68 ± 17.372▲ 81.26 ± 9.902

x2/F value 2.814 56.598 0.137 5.872 2.759

P value 0.245 < 0.001 0.872 0.003 0.066

▲P < 0.05, compared with Group 1. *P < 0.05, compared with Group 2.

 

Table 3   Comparison of time-domain features of the pulse signals among the three groups [M (Q1, Q3)]

Group T H1/T1 As Ad H2/H1

1 0.738 (0.675, 0.807) 14.433 (11.277, 17.450) 174 553.5 (136 165, 202 218) 64 361.85 (50 246, 78 674) 0.892 (0.791, 0.945)

2 0.761 (0.688, 0.876) 15.723 (9.466, 21.573) 198 407.0 (142 340, 274 594) 82 709.10 (49 358, 125 825) 0.944 (0.885, 0.973)▲

3 0.808 (0.726, 0.899)▲ 19.716 (12.551, 27.547) *▲ 262 886.0 (172 603, 349 526)*▲ 85 683.50 (57 873, 135 087)▲ 0.933 (0.814, 0.960)

Z value 9.927 15.937 23.295 11.603 11.637

P value 0.007 < 0.001 < 0.001 0.003 0.003

Group H3/H1 H4/H1 H5/H1 T1/T T4/T

1 0.725 (0.657, 0.814) 0.400 (0.364, 0.459) 0.377 (0.324, 0.433) 0.150 (0.132, 0.174) 0.423 (0.394, 0.455)

2 0.816 (0.725, 0.889)▲ 0.459 (0.352, 0.530) 0.426 (0.317, 0.525) 0.153 (0.126, 0.184) 0.417 (0.384, 0.447)

3 0.777 (0.685, 0.857) 0.378 (0.309, 0.502) 0.383 (0.328, 0.465) 0.144 (0.125, 0.171) 0.406 (0.376, 0.435)

Z value 11.182 4.973 5.348 2.232 3.304

P value 0.004 0.083 0.069 0.328 0.192
 

Group T1/T4 T5/T4 W1 W2 W1/T W2/T
1 0.355

(0.322, 0.404)
1.208

(1.162, 1.285)   
0.177

(0.152, 0.197)   
0.120

(0.106, 0.156)   
0.246

(0.214, 0.266)
0.184

(0.141, 0.207)   
2 0.358

(0.313, 0.433)
1.183

(1.108, 1.273)   
0.201

(0.165, 0.222)▲
0.161

(0.115, 0.174)▲
0.263

(0.231, 0.288)
0.202

(0.170, 0.235)▲

3 0.343
(0.301, 0.392)

1.166
(1.111, 1.219)▲

0.200
(0.174, 0.222)▲

0.153
(0.114, 0.183)▲

0.247
(0.212, 0.282)

0.192
(0.145, 0.233)   

F value 1.779 8.029 11.592 9.854 5.598 7.757

P value 0.411 0.018 0.003 0.007 0.061 0.021

▲P < 0.05, compared with Group 1. *P < 0.05, compared with Group 2.
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model  (Figure  3B). Table  5 summarized  all  the  perfor-
mance  metrics,  revealing  F1-score  values  of  70.04%,
60.76%,  and  65.04%  for  Group  1,  Group  2,  and  Group  3,
respectively, as well as AUC values of 0.92, 0.74, and 0.81
for the same groups. Furthermore, an accuracy of 67.69%,
a  micro-average  AUC  of  0.83,  and  a  macro-average  AUC

of 0.82 provided a comprehensive evaluation of the mod-
el’s overall performance across different groups. 

4 Discussion

Atherosclerosis  is  a  systemic  disorder  that  affects  multi-
ple arterial segments,  with CHD and ischemic stroke be-
ing  two  significant  manifestations.  These  two  conditions
often coexist, significantly impacting patient outcomes [18].
Therefore,  early  diagnosis  and  treatment  of  ischemic
stroke in patients with CHD can improve their  quality  of
life and long-term prognosis.

Pulse  diagnosis  is  an  effective,  noninvasive,  conve-
nient, and real-time diagnostic method for assessing arte-
rial  structures  and  functions [19].  Despite  research  focus-
ing  on  cardiocerebral  diseases,  studies  that  distinguish
wrist pulse signals between CHD patients without a histo-
ry  of  ischemic  stroke  and  those  with  such  a  history
remain  scarce.  Consequently,  our  study  compared  and

 

Table 4   Comparison of MSE features of pulse signals among the three groups [M (Q1, Q3)]

Group MSE1 MSE2 MSE3 MSE4 MSE5

1 0.042 (0.037, 0.047) 0.085 (0.076, 0.095) 0.131 (0.116, 0.147) 0.176 (0.155, 0.198) 0.217 (0.189, 0.242)

2 0.036 (0.029, 0.045)▲ 0.072 (0.058, 0.093)▲ 0.111 (0.088, 0.143)▲ 0.146 (0.120, 0.193)▲ 0.183 (0.148, 0.234)▲

3 0.033 (0.028, 0.039)▲ 0.067 (0.057, 0.080)▲ 0.103 (0.087, 0.122)▲ 0.139 (0.118, 0.163)▲ 0.171 (0.147, 0.196)▲

Z value 31.823 31.812 31.993 31.208 29.43

P value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Group MSE6 MSE7 MSE8 MSE9 MSE10

1 0.250 (0.214, 0.279) 0.278 (0.236, 0.312) 0.304 (0.254, 0.342) 0.325 (0.274, 0.366) 0.347 (0.292, 0.391)

2 0.209 (0.170, 0.269)▲ 0.240 (0.192, 0.305)▲ 0.273 (0.211, 0.338) 0.299 (0.229, 0.366) 0.322 (0.242, 0.400)

3 0.198 (0.170, 0.226)▲ 0.224 (0.188, 0.250)▲ 0.247 (0.205, 0.280)▲ 0.271 (0.221, 0.307)▲ 0.287 (0.237, 0.334)▲

Z value 25.826 22.231 18.936 17.16 14.924

P value < 0.001 < 0.001 < 0.001 < 0.001 0.001

Group MSE11 MSE12 MSE13 MSE14 MSE15

1 0.369 (0.312, 0.412) 0.388 (0.326, 0.435) 0.408 (0.344, 0.461) 0.427 (0.362, 0.483) 0.439 (0.380, 0.503)

2 0.342 (0.257, 0.437) 0.359 (0.271, 0.471) 0.38 5(0.284, 0.501) 0.398 (0.297, 0.523) 0.406 (0.309, 0.549)

3 0.306 (0.250, 0.357)▲ 0.324 (0.264, 0.379)▲ 0.340 (0.279, 0.401)▲ 0.354 (0.290, 0.424)▲ 0.372 (0.306, 0.440)▲

Z value 14.256 12.896 12.122 11.626 11.384

P value 0.001 0.002 0.002 0.003 0.003

Group MSE16 MSE17 MSE18 MSE19 MSE20

1 0.462 (0.396, 0.523) 0.472 (0.409, 0.545) 0.500 (0.421, 0.573) 0.515 (0.441, 0.594) 0.518 (0.448, 0.611)

2 0.423 (0.318, 0.570) 0.446 (0.334, 0.596) 0.468 (0.346, 0.622) 0.475 (0.366, 0.634) 0.494 (0.375, 0.667)

3 0.387 (0.324, 0.461)▲ 0.402 (0.330, 0.479)▲ 0.417 (0.349, 0.500)▲ 0.433 (0.351, 0.515)▲ 0.441 (0.367, 0.539)▲

Z value 10.821 10.135 9.474 9.934 9.108

P value 0.004 0.006 0.009 0.007 0.011

▲P < 0.05, compared with Group 1.

 

Group 1

Group 1

Group 2

Group 2

Group 3

Group 3

A
ct

ua
l c

la
ss

Predicted class

52 9 4

11 47 14

7 18 40

50

A B

40

30

20

10

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Micro-average ROC curve (area = 0.83)
Micro-average ROC curve (area = 0.82)
ROC curve of Group 1 (area = 0.92)
ROC curve of Group 2 (area = 0.74)
ROC curve of Group 3 (area = 0.81)

 
Figure 3   Performance evaluation of the RF model
A, confusion matrix of the classification results. The darker col-
or the more samples. B. ROC curves for the three groups.

 

Table 5   Evaluation metrics of the RF model for the three groups

Group Precision (%) Recall (%) F1-score (%) AUC Accuracy (%) Micro-average AUC Macro-average AUC

1 80.00 74.29 70.04 0.92

67.69 0.832 61.54 60.00 60.76 0.74 0.82

3 61.54 68.97 65.04 0.81
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analyzed time-domain and MSE features of pulse signals
extracted  from  healthy  individuals,  CHD  patients  with-
out a history of ischemic stroke, and those with a history
of  ischemic  stroke.  By  distinguishing  the  pathological
states  of  the  three  populations  using  their  pulse  signals,
we aim to provide novel insights that could inform clini-
cal diagnosis and treatment strategies. 

4.1 Comparative  analysis  of  pulse  features  for  distinct
groups

Our  findings  were  summarized  as  follows.  Upon  analyz-
ing  general  clinical  information,  we  observed  that  CHD
patients  without  a  history  of  ischemic  stroke  and  those
with  such  a  history  were  significantly  older  compared
with healthy individuals. Additionally, CHD patients with
a  history  of  ischemic  stroke  exhibited  higher  systolic
blood  pressure  than  healthy  individuals.  These  findings
are consistent with the widely recognized knowledge that
advanced age and hypertension constitute significant risk
factors for atherosclerosis [20] . This suggests that CHD pa-
tients with a history of ischemic stroke may have a heav-
ier  atherosclerotic  burden  and  increased  risk  for  cardio-
vascular  and  cerebrovascular  events.  It  is  important  to
note  that  both  blood  pressure  and  age  can  influence
pulse waveforms by affecting the deformation of the vas-
cular  wall  and  altering  the  dynamics  of  blood  flows [21].
Therefore,  when developing diagnostic models based on
pulse signals, it is essential to take these factors into con-
sideration  to  enhance  the  accuracy  and  reliability  of  the
models.

Furthermore,  a  comparative  analysis  of  the  time-
domain  features  of  wrist  pulse  signals  among  the  three
groups  revealed  several  significant  findings.  (i)  Com-
pared with healthy controls, CHD patients without a his-
tory of  ischemic stroke exhibited higher ratios of  H2/H1,
H3/H1,  W1,  W2,  and  W2/T,  indicating  poorer  arterial
compliance,  increased  peripheral  resistance,  prolonged
hypertension  duration,  and  augmented  cardiac  after-
load [22]. (ii) Compared with the healthy controls, CHD pa-
tients with a history of ischemic stroke exhibited elevated
values for T5/T4, T,  H1/T1, W1, W2, As,  and Ad. This re-
sult  indicates  that  the  pathological  changes  in  CHD  pa-
tients  with  an  ischemic  stroke  history  are  characterized
by enhanced myocardial contractility, a slower heart rate,
prolonged  hypertension  duration,  and  increased  cardiac
output  during  both  the  systolic  and  diastolic  phases [22].
These alterations carry specific pathophysiological signif-
icance, particularly markedly elevated SBP in this patient
group.  Under  hypertensive  conditions,  the  heart  may
adapt  by  enhancing  myocardial  contractility  and  reduc-
ing  heart  rate  to  maintain  adequate  cardiac  output  and
stabilize  blood  pressure,  thereby  counteracting  the  in-
creased  peripheral  resistance.  However,  the  prolonged
persistence  of  these  adaptive  changes  may  ultimately

exert  adverse  effects  on  cardiac  health.  (iii)  When  com-
pared  with  CHD  patients  without  a  history  of  ischemic
stroke, those with such a history exhibited greater values
for  As  and  H1/T,  suggesting  an  increase  in  myocardial
contractility  and  systolic  cardiac  output.  These  alter-
ations  represent  an  adaptive  response  of  the  body  to  is-
chemic stroke and myocardial ischemia. This adaptation
helps maintain stable blood pressure and cardiac output,
thereby  ensuring  adequate  blood  supply  to  vital  organs.
Nonetheless,  the  persistence  of  these  adaptive  changes
over  time  may  lead  to  adverse  consequences  for  the
heart,  such as the gradual  progression of  myocardial  hy-
pertrophy  to  heart  failure,  and  the  acceleration  of  coro-
nary atherosclerosis due to persistent hypertension com-
bined with enhanced myocardial contractility, ultimately
resulting in more serious myocardial ischemia events.

Regarding  the  MSE  features,  our  analysis  also  re-
vealed significant differences among the different groups.
Specifically, MSE values spanning both larger and small-
er scales (MSE1 − MSE20) were significantly lower in CHD
patients  with  a  history  of  ischemic  stroke  compared  to
healthy  controls.  Similarly,  MSE  values  in  larger  scales
(MSE1 − MSE7)  were also reduced in CHD patients with-
out a history of ischemic stroke when compared with the
controls. These findings reflect the reduced complexity of
pulse  signals  in  pathological  states,  with  the  most  pro-
nounced  decrease  observed  in  CHD  patients  who  have
suffered from ischemic stroke. MSE serves as a quantita-
tive  metric  of  irregularity  or  complexity  of  pulse  signals,
with  lower  values  signifying  reduced  complexity  and  in-
creased  regularity,  which  is  correlated  with  the  diseased
states [21].  In  this  context,  the  decreased  MSE  values  ob-
served in CHD patients, particularly those with a past is-
chemic  stroke,  may  reflect  the  underlying  pathophysio-
logical  mechanisms  related  to  both  cardiovascular  and
cerebrovascular  systems,  such  as  impaired  autonomic
regulation  or  vascular  dysfunction,  both  of  which  are
commonly associated with CHD and ischemic stroke. To
further  our  understanding  of  these  findings,  additional
research  is  needed  to  elucidate  the  precise  mechanisms
underlying  these  MSE  changes  and  to  explore  their  po-
tential implications for disease progression. 

4.2 Model performance analysis and future prospects

Our  study  comprehensively  analyzed  both  linear  and
nonlinear characteristics of pulse signals and developed a
classification model based on time-domain and MSE fea-
tures.  For the healthy individuals (Group 1),  the model’s
performance metrics precision, recall, F1-score, and AUC
were optimal, reaching 80.00%, 74.29%, 70.04%, and 0.92,
respectively.  However,  for CHD patients without a histo-
ry of ischemic stroke (Group 2) and those with a history of
ischemic  stroke  (Group  3),  these  metrics  exhibited  a
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decline. This decrease might be attributed to the overlap-

ping  pathological  foundations  between  Group  2  and

Group  3,  posing  a  challenge  on  differentiating  their

pathological  states.  Despite  this  challenge,  the  model’s

overall  prediction accuracy  remained at  67.69%,  indicat-

ing  its  ability  to  discern  between  different  pathological

states  to  some  extent.  Furthermore,  the  proximity  of  the

micro-average and macro-average AUC values suggested

that  the  model  demonstrated a  relatively  consistent  per-

formance  across  all  groups,  despite  variations  observed

in its performance on healthy individuals. This consisten-

cy  is  a  positive  indicator  of  the  model’s  robustness  and

generalizability.  Collectively,  our  findings  have  con-

firmed the feasibility of using pulse signals to classify the

different pathological states in humans.

However, the findings of this study are inherently con-

strained  by  the  limited  sample  size,  which  restricts  the

model’s  generalization  ability  and  its  extensive  applica-

tion. This constraint might lead to overfitting, causing the

model  to  perform  poorly  on  more  diverse  or  unfamiliar

data. Furthermore, despite our consideration of both lin-

ear  and  nonlinear  features,  there  remains  possible  that

some  crucial  features  have  been  overlooked,  potentially

affecting the model’s accuracy and robustness. Addition-

ally, improper setting of model parameters poses another

obstacle to enhancing the performance of the model.

For future research, first, we should augment the sam-

ple size and diversity to ensure the balance and represen-

tativeness  of  the  study  results,  thereby  enhancing  the

model’s  generalization  capacity.  Second,  we  need  to

deepen  feature  research  by  constructing  features  closely

related  to  the  problem  domain,  enhancing  the  model’s

learning  ability.  Third,  we  should  integrate  multimodal

information,  encompassing  other  diagnostic  data  from

both  Chinese  medicine  and  Western  medicine,  to  im-

prove the accuracy and reliability of the prediction mod-

el.  Last,  we  should  also  strive  to  optimize  the  model’s

training  parameters,  balancing  predictive  performance

and model simplicity. Through these efforts, we aspire to

develop  a  more  accurate,  robust,  and  widely  applicable

model for real-world clinical scenarios. 

5 Conclusion

Differences  in  pulse  features  reflect  variations  in  arterial
compliance, peripheral resistance, and cardiac afterload,
as well  as the complexity of  pulse signals among healthy
individuals,  CHD  patients  without  a  history  of  ischemic
stroke,  and  those  with  such  a  history.  The  pulse-based
recognition  model  holds  potential  in  differentiating  the
three  populations,  offering  a  novel  diagnostic  reference
for clinical practice. 
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冠心病伴或不伴缺血性卒中病史患者的脉象特征分析

李欣†, 李伟†, 吴文妍, 彭詠捷, 李思琪, 黎瑞, 郭睿*

上海中医药大学中医学院, 上海 201203, 中国

 
【摘要】目的   评估脉图分析技术在识别健康人群、冠心病（CHD）患者不伴以及伴缺血性卒中病史的三类

不同生理病理状态人群的应用潜力。方法   于 2021 年 4 月 15 日至 9 月 15 日在上海中医药大学附属曙光医

院东院、岳阳中西医结合医院以及上海市中医医院招募研究对象，并将他们分为三组：健康对照组（组

1）、无缺血性卒中史的 CHD 患者（组 2）和有缺血性卒中史的 CHD 患者（组 3）。应用脉诊仪无创采集

脉象信号， 运用时域分析和多尺度熵（MSE）方法提取脉象信号的线性时域特征和非线性时间序列 MSE 特

征，并进行组间比较分析。基于这些脉象特征，运用随机森林（RF）算法建立识别模型。采用混淆矩阵计

算的准确率、精确率、召回率、F1 分数以及受试者工作特征曲线下（ROC）面积（AUC）等指标评估模型

的分类性能。结果    最终纳入 189 名受试者，其中组  1  共 63 例，组  2 共  61 例，组 3 共 65 例。与组 1

相比，组 2 脉象特征 H2/H1、H3/H1、W1、W2 和 W2/T 均显著升高，其 MSE1 – MSE7 显著降低（P <

0.05），组 3 脉象特征 T5/T4、T、H1/T1、W1、W2、AS 和 Ad 均显著升高，其 MSE1 – MSE20 显著降低（P <

0.05）；与组 2 相比，组 3 的 H1/T1 和 As 值显著升高（P < 0.05）。RF 模型对组 1、2、3 的识别精确率分

别为 80.00%、61.54%、61.54%，召回率分别为 74.29%、60.00%、68.97%，F1 值分别为 70.04%、60.76%、

65.04%，AUC 值分别为 0.92、0.74、0.81。模型总体准确率为 67.69%，微观平均 AUC 为 0.83，宏观平均

AUC 为 0.82。结论   脉象特征差异体现了健康人群、无缺血性卒中病史的 CHD 患者以及有缺血性卒中病史

的 CHD 患者在动脉顺应性、外周阻力、心脏后负荷以及脉象信号系统复杂性存在的差异。基于脉象的识别

模型在区分这三类人群上展现了良好潜力，有望为临床实践提供新的参考依据。

【关键词】脉诊；冠心病；缺血性脑梗死；信号处理；模式识别
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