
 
Construction  and  optimization  of  traditional  Chinese  medicine  constitution
prediction models based on deep learning

ZHANG Xinge, XU Qiang, WEN Chuanbiao*, LUO Yue*

School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China

 

A  R  T  I  C  L  E      I  N  F  O A  B  S  T  R  A  C  T
 

Article history
Received 10 July 2024
Accepted 02 September 2024
Available online 25 September 2024

 
 

Keywords
Traditional Chinese medicine (TCM)
constitution
Deep learning
Constitution classification
Prediction model
Optimization research

 

Objective  To cater to the demands for personalized health services from a deep learning per-
spective by investigating the characteristics of traditional Chinese medicine (TCM) constitu-
tion data and constructing models to explore new prediction methods.
Methods  Data  from  students  at  Chengdu  University  of  Traditional  Chinese  Medicine  were
collected  and  organized  according  to  the  24  solar  terms  from  January  21,  2020,  to  April  6,
2022. The data were used to identify nine TCM constitutions, including balanced constitution,
Qi deficiency constitution, Yang deficiency constitution, Yin deficiency constitution, phlegm
dampness  constitution,  damp  heat  constitution,  stagnant  blood  constitution,  Qi  stagnation
constitution,  and  specific-inherited  predisposition  constitution.  Deep  learning  algorithms
were employed to construct multi-layer perceptron (MLP), long short-term memory (LSTM),
and deep belief network (DBN) models for the prediction of TCM constitutions based on the
nine constitution types. To optimize these TCM constitution prediction models, this study in-
troduced the attention mechanism (AM), grey wolf optimizer (GWO), and particle swarm op-
timization (PSO). The models’ performance was evaluated before and after optimization us-
ing the F1-score, accuracy, precision, and recall.
Results  The  research  analyzed  a  total  of  31  655  pieces  of  data.  (i)  Before  optimization,  the
MLP model achieved more than 90% prediction accuracy for all constitution types except the
balanced and Qi deficiency constitutions. The LSTM model's prediction accuracies exceeded
60%, indicating that their potential in TCM constitutional prediction may not have been fully
realized due to the absence of pronounced temporal features in the data. Regarding the DBN
model, the binary classification analysis showed that, apart from slightly underperforming in
predicting the Qi deficiency constitution and damp heat constitution, with accuracies of 65%
and 60%, respectively.  The DBN model demonstrated considerable discriminative power for
other constitution types, achieving prediction accuracy rates and area under the receiver op-
erating  characteristic  (ROC)  curve  (AUC)  values  exceeding  70%  and  0.78,  respectively.  This
indicates that while the model possesses a certain level of constitutional differentiation abili-
ty,  it  encounters  limitations  in  processing  specific  constitutional  features,  leaving  room  for
further  improvement  in  its  performance.  For  multi-class  classification  problem,  the  DBN
model’s  prediction  accuracy  rate  fell  short  of  50%.  (ii)  After  optimization,  the  LSTM  model,
enhanced with the AM, typically  achieved a prediction accuracy rate above 75%, with lower
performance  for  the  Qi  deficiency  constitution,  stagnant  blood  constitution,  and  Qi  stagna-
tion  constitution.  The  GWO-optimized  DBN  model  for  multi-class  classification  showed  an
increased prediction accuracy rate of  56%, while the PSO-optimized model had a decreased
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accuracy  rate  to  37%.  The  GWO-PSO-DBN  model,  optimized  with  both  algorithms,  demon-
strated an improved prediction accuracy rate of 54%.
Conclusion  This study constructed MLP, LSTM, and DBN models for predicting TCM consti-
tution  and  improved  them  based  on  different  optimisation  algorithms.  The  results  showed
that  the  MLP  model  performs  well,  the  LSTM  and  DBN  models  were  effective  in  prediction
but with certain limitations. This study also provided a new technology reference for the es-
tablishment  and optimisation strategies  of  TCM constitution prediction models,and a  novel
idea for the treatment of non-disease.

 

 

1 Introduction

The  discipline  of  traditional  chinese  medicine  (TCM)
constitutional  medicine [1],  a  cornerstone of  the theoreti-
cal  framework  of  TCM,  transcends  mere  categorization
and description of individual constitutions. It profoundly
elucidates the dynamic equilibrium between an individu-
al’s intrinsic physiological functions, psychological states,
and  the  external  environment,  and  how  this  balance
shapes  health  status  and  disease  susceptibility.  The  em-
phasis on “preventive treatment of diseases” (治未病) or
treating before the onset of illness through constitutional
conditioning,  which  resonates  with  modern  medicine’s
concept of preventive medicine, emphasizing the impor-
tance of prevention over treatment.

The  infusion  of  deep  learning  technology  into  TCM
constitution  prediction  has  invigorated  the  field.  Its
formidable  data  processing  and  feature  extraction  capa-
bilities  render  predictions  more  precise  and  efficient.  By
constructing  and  optimizing  deep  learning  models,  re-
searchers delve deeper into the intricate relationships be-
tween constitution and disease, enriching TCM constitu-
tional research with abundant and insightful information.

Recent  advancements  in  deep  learning  have  signifi-
cantly  impacted  the  classification  of  TCM  constitutions.
(i)  Based on tongue manifestations [2, 3]:  deep neural  net-
work  models  are  constructed  to  automatically  learn
tongue  manifestation  features  like  color,  texture,  and
shape. Some use convolutional neural networks and oth-
er  methods  to  improve  classification  accuracy [4].  Addi-
tionally,  improved  approaches  like  the  metric  classifica-
tion method based on Triplet Loss address the small sam-
ple problem to enhance performance [5]. (ii) Based on fa-
cial  images [6-8]:  deep  convolutional  neural  networks  are
employed  to  analyze  facial  images  and  extract  related
features  associated  with  TCM  constitution  classification,
providing  a  new,  convenient  identification  means.
(iii)  Multimodal  data  fusion [9]:  fusing  multimodal  data
such as tongue manifestations and facial images, and us-
ing  deep  learning  models  to  analyze  them  can  compen-
sate  for  single-modal  limitations and boost  classification
accuracy. (iv) Combined with TCM theory [10]: deep learn-
ing models are combined with TCM theory to adjust their
structure  and  parameters,  and  develop  personalized  di-
agnostic models in line with TCM thinking and rules. For

example,  according  to  TCM  theories  such  as  Yin  Yang
and five elements, as well as Zang-Fu and meridians, the
structure and parameters of deep learning models are ad-
justed to align with TCM’s thinking mode and diagnostic
rules.  (v)  Clinical  application  and  development  of  auxil-
iary diagnosis systems [11]:  research results  are applied in
clinical  practice  with  auxiliary  diagnosis  systems  devel-
oped.  They  collect  relevant  patient  information  and  use
deep learning models for analysis, improving the efficien-
cy  and  accuracy  of  TCM  constitution  identification  and
helping with personalized plans.

The prediction of TCM constitution is of great signifi-
cance. On one hand, it can accurately judge the constitu-
tion type to  grasp the disease trend,  formulate  personal-
ized  treatment  plans,  and  promote  the  modernization
and  internationalization  of  TCM  theory.  On  the  other
hand,  constitution  prediction  is  crucial  for  health  man-
agement. It is the cornerstone of preventing future health
risks,  providing  customized  suggestions,  connecting
physical  and  mental  health,  dealing  with  chronic  dis-
eases,  and improving health literacy.  At  the scientific  re-
search level, it promotes the integration of multiple disci-
plines  and  provides  a  new  perspective  for  precision
medicine.  To  sum  up,  the  necessity  of  constitution  pre-
diction is prominent in aspects such as early intervention,
precision medicine, public health, mental health, and sci-
entific and technological progress.

The research on building and optimizing TCM consti-
tution prediction models  based on deep learning,  focus-
ing on prediction analysis and model optimization, is ex-
pected  to  provide  new  ideas  and  methods  for  TCM  con-
stitution research and is of  extraordinary significance for
promoting the development of TCM and improving pub-
lic health. 

2 Data and methods
 

2.1 Data sources and preprocessing
 

2.1.1 Data  sources　 Data  were  collected  to  identify  the
nine  TCM  constitutions,  including  balanced  constitu-
tion, Qi deficiency constitution, Yang deficiency constitu-
tion, Yin deficiency constitution, phlegm dampness con-
stitution,  damp heat  constitution,  stagnant blood consti-
tution,  Qi  stagnation  constitution,  and  specific-inherited
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predisposition constitution [12].  All  data were ethically re-
viewed by the Medical Ethics Committee of the Affiliated
Hospital  of  Chengdu  University  of  Traditional  Chinese
Medicine (2022KL-024) [13].

Utilizing  the  60-item  Constitution  in  Chinese  Medi-
cine Questionnaires (CCMQ) [12] within the TCM constitu-
tion identification mini-program developed by our team,
from  January  21,  2020  to  April  6,  2022,  students  from
Chengdu  University  of  Traditional  Chinese  Medicine
were  invited  to  complete  their  personal  basic  informa-
tion and the entire questionnaire of 60 items during each
of  the  24  solar  terms.  Upon  successful  submission,  they
received  their  constitution  identification  results.  These
results were then subjected to a secondary manual verifi-
cation process to ensure accuracy.

Inclusion criteria: (i) participants of any gender, aged
between 18 and 60 years, who were either healthy or in a
subhealth state;  (ii)  participants who were classified into
one of the nine constitution types as defined in the “Clas-
sification and Judgment of TCM Constitution” scale, pub-
lished  by  the  China  Association  of  Chinese  Medicine  in
2009 [12];  (iii)  participants  who  were  informed  about  and
provided consent to participate in this study [13].

Exclusion criteria: (i) participants who were undergo-
ing  treatment  for  major  illnesses  such  as  cardiovascular
and cerebrovascular diseases, diabetes, or cancer; (ii) part-
icipants who had non-major illnesses but required medi-
cation for maintenance; (iii) pregnant and lactating wom-
en, as well as individuals with psychiatric or neurological
disorders [13]. 

2.1.2 Data preprocessing　The numbers 1 to 9 were used
to quantify the nine TCM constitutions, including the bal-
anced constitution, Qi deficiency constitution, Yang defi-
ciency  constitution,  Yin  deficiency  constitution,  phlegm
dampness constitution, damp heat constitution, stagnant
blood constitution, Qi stagnation constitution, and speci-
fic-inherited  predisposition  constitution,  respectively [12].
We quantified the 24 solar terms starting from the begin-
ning of spring with numbers 1 to 24. The numbers 1 and 2
were  used  to  quantify  males  and  females,  respectively.
The number 0 was used to quantify  the unfilled items in
the CCMQ, and the numbers 1 to n were utilized to quan-
tify the indicators of the items, respectively. According to
the  corresponding  relationship  between  items  on  the
questionnaire, the data characteristics of different consti-
tutions were collated and sieved. In addition, data decen-
tralization and normalization reduced the correlation be-
tween features so that other order-of-magnitude features
were treated equally in model training.

The  former  process,  decentering,  involved  subtract-
ing  the  mean  value  of  each  feature  from  its  dataset,  re-
sulting in a mean of zero for the data. This eliminated the
influence  of  measurement  scales  on  data  analysis.  Nor-
malization  further  scaled  the  data  to  a  specific,  smaller
range,  such  as  [0,  1],  using  a  proportional  adjustment.

This ensured that each feature carried similar weight nu-
merically, with a common approach being min-max nor-
malization.  These  two  processes  collectively  minimized
feature  correlations  and  enabled  equal  consideration  of
features with different magnitudes during model training,
thereby  significantly  enhancing  training  efficiency  and
prediction  accuracy.  The  specific  computational  formu-
las are shown in Equations (1) and (2):

x′ = x−mean (1)

x′′ =
(x−min)

(max−min)
(2)

x′

x′′

In  this  context, x represents  the  original  data,  mean
denotes the average value of the original data,  is the da-
ta after the decentering process, min and max signify the
minimum  and  maximum  values  of  the  original  data,  re-
spectively, and  stands for the data after normalization. 

2.2 Feature extraction

Utilizing  variance  thresholding  and  mutual  information
as feature extraction methods is a crucial step in data pre-
processing. Variance thresholding involves setting a vari-
ance threshold to filter out features with low variance, i.e.,
those  that  exhibit  minimal  variation,  thereby  retaining
features  within  the  dataset  that  possess  significant  dis-
criminative power.  This  approach contributed to remov-
ing redundant information and enhancing models’ train-
ing efficiency. Conversely, mutual information quantifies
the  correlation  between  features  and  the  target  variable,
enabling the selection of  features with higher mutual  in-
formation  values  relative  to  the  target.  This  ensures  that
the  model  focused  on  the  most  relevant  features  of  the
target, ultimately improving prediction accuracy.

In this study, features were extracted for the nine con-
stitutions,  and  the  normalized  results  were  compared  to
obtain the corresponding feature sets under the variance
threshold  method  and  the  mutual  information  method.
The  feature  sets  obtained  under  the  two  methods  were
compared again to extract the repeated items, and the fi-
nal  feature  set  (the  most  representative  and  predictive
feature  set)  was  obtained.  This  process  combines  the
variance  threshold  and  mutual  information  methods  to
remove  redundant  information  and  ensures  that  the
model focuses on the features most relevant to the target. 

2.3 Model architecture design

We constructed three TCM constitution prediction mod-
els  based  on  the  deep  learning  algorithms:  multi-layer
perceptron  (MLP),  long  short-term  memory  (LSTM)
networks,  and  deep  belief  network  (DBN)  for  different
constitutions.  Moreover,  according  to  the  experimental
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results,  the  attention  mechanism  (AM),  grey  wolf  opti-
mizer  (GWO),  and  particle  swarm  optimization  (PSO)
were applied to optimize the models. Then, we elaborat-
ed on the three TCM constitution prediction models and
the optimization algorithms mentioned above. 

2.3.1 MLP　In the realm of statistics and machine learn-
ing,  a  significant  milestone  in  biomimetics  is  the  evolu-
tion  of  the  perceptron.  Originating  from  the  MLP  model
proposed  by  MCCULLOCH  et  al. [14] in  1943,  this  model
laid the foundation for the first mathematical framework
based on physiological neurons.

MLP  is  adaptable  to  a  wide  range  of  tasks  and  data
types. By adjusting its network structure and parameters,
MLP  can  learn  complex  mapping  relationships  between
inputs  and  outputs,  making  it  an  outstanding  performer
in tasks such as classification, regression, and clustering.
This  versatility  underscores  the  rationale  behind  select-
ing  MLP  to  construct  the  TCM  constitution  prediction
model in this study.

MLP  consists  of  three  primary  components.  (i)  The
input layer: the nodes in this layer correspond one-to-one
with  the  feature  dimensions  of  the  input  data,  serving
solely  as  a  conduit  for  transmitting  external  constitution
data into the model. They do not participate in any com-
putational processes;  their function is  purely to relay the
input data forward. (ii) The hidden layer(s): the MLP com-
prises  at  least  one hidden layer  that  receives the weight-
ed sum (including the bias term) of the constitution data
transmitted from the previous layer.  It  applies  activation
functions  such  as  sigmoid,  tanh,  or  ReLU  to  obtain  its
output.  This  process  repeats  through  all  hidden  layers.
(iii)  The output  layer:  an appropriate  activation function
is applied upon receiving the computational results from
the last hidden layer. Taking a binary classification prob-
lem  as  an  example,  the  output  layer  is  configured  with
two  neurons,  and  the  sigmoid  function  is  chosen  as  the
activation function. Based on the constitution feature da-
ta input from the input layer, this allows the model to de-
termine  whether  to  predict  an  output  of “is XX constitu-
tion” or “not XX constitution.” During the forward propa-
gation process, the values of weights and biases are fixed,
which determines how the inputs influence the outputs. 

2.3.2 LSTM　The LSTM networks are a special architec-
ture  within  the  recurrent  neural  network  (RNN)  family.
They  were  put  forward  by  HOCHREITER  in  1997 [15].
LSTM makes innovative optimizations based on the core
features  of  RNN [16].  Inspired  by  the  selective  memory
mechanism  of  the  human  brain,  it  has  an  input  gate,  a
forget  gate,  an  output  gate  and  a  cell  unit.  These  gating
units work together to selectively filter information [17], re-
tain the parts  relevant  to  the task and help with efficient
processing of sequential data. They are located at the in-
terfaces  between  other  parts  of  the  neural  network  and
the  memory  unit.  They  optimize  the  performance  of  the
neural  network  by  controlling  the  flow  and  storage  of

information  instead  of  directly  influencing  the  activities
of other neuron nodes [18].

ht−1

xt

C̃t

it

ft ·Ct−1

it · C̃t

Ct

ht

Its  core  computational  process  is  divided  into  three
phases [19]. (i) The forgetting phase. By combining  and

 through the forget gate, a value between 0 and 1 is gen-
erated  using  the  sigmoid  function,  determining  which
constitutional  characteristic  information  in  the  memory
cell  state  should  be  retained  or  forgotten.  (ii)  The  selec-
tive  memory  phase.  The  sigmoid  function  controls  the
amount  of  information to  be  memorized,  while  the  tanh
function  generates  a  candidate  state .  This  candidate
constitutional  characteristic  information does not all  en-
ter the LSTM memory but are regulated by the input gate

, determining the extent to which constitutional charac-
teristic  information  is  retained  for  the  next  phase.  Ulti-
mately,  the  previously  retained  constitutional  charac-
teristic information ( ) and the newly required con-
stitutional  characteristic  information  after  secondary
adjustment and update ( ) are summed to update the
learning and memory state  of  constitutional  characteris-
tics at the current time step, denoted as .  (iii) The out-
put  phase.  The  output  gate  utilizes  the  sigmoid  function
to  determine  the  amount  of  constitutional  characteristic
information to be output. The tanh function standardizes
the  output  constitutional  characteristic  vector,  which  is
then  multiplied  by  the  output  gate  to  obtain  the  hidden
layer  output  of  the  constitutional  characteristic  infor-
mation at the current time step. Throughout this process,
LSTM  effectively  handles  long-term  dependencies  in
constitutional  characteristic  sequence  data  by  meticu-
lously controlling information flow, enabling high-perfor-
mance  sequence  modeling.  A  schematic  diagram  of  the
LSTM network architecture is shown in Figure 1.
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Figure 1   Schematic diagram of LSTM network architec-
ture
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The diagram,  the  function refers  to  the  function.  (where
x = f, i, c, o) represents the weight matrices, and  (where x = f,
i, c, o) represents the bias parameters.
  

2.3.3 DBN　The  DBN  is  a  multi-layered  neural  network
architecture  that  is  constructed  from  multiple  layers  of
neurons,  with  each  layer  comprising  both  visible  and
hidden  units.  The  visible  units  serve  as  the  input  to  the
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network, carrying the initial data feature information and
forming  the  first  gateway  for  data  entry.  In  contrast,  the
hidden  units  play  a  pivotal  role,  tasked  with  feature  ex-
traction, deeply analyzing and processing the input data.
Thus, they are often metaphorically referred to as feature
detectors [20].

The core building block of DBN is the restricted Boltz-
mann  Machine  (RBM).  RBM  is  a  special  form  of  the
Boltzmann Machine (BM), an undirected graphical mod-
el  that  defines  the  energy  state  of  a  system  based  on  the
states of nodes and the connection weights between them
in  an  undirected  graph.  The  training  of  DBN  proceeds
layer  by  layer,  with  each  layer’s  RBM  being  trained
through  unsupervised  learning.  This  process  gradually
extracts  deeper  features  from  the  data,  ultimately  con-
structing a robust feature representation model. DBN ef-
fectively learns the intrinsic laws and structures of the da-
ta through this layer-wise training, providing strong sup-
port for subsequent tasks. The schematic diagram specifi-
cally depicting the working principle of the DBN network
structure for multi-class classification of landing points is
shown  in Figure  2 (similarly,  for  binary  classification  of
landing  points,  the  output  function  would  be  replaced
from softmax to sigmoid function). 

2.4 Optimization algorithms
 

2.4.1 AM　The  AM  originates  from  the  imitation  of  the
information processing mechanisms of the human visual
system.  Humans  selectively  focus  on  information  due  to
the  bottleneck  in  information  processing  and  the  differ-
ences among regions of the retina, so as to make efficient
use  of  visual  resources [21].  Inspired  by  this,  when  the
computational and data processing capabilities of neural
networks  are  limited,  the  attention  mechanism  allocates
resources according to the importance of tasks, alleviates
information  overload,  improves  the  efficiency  and  accu-
racy  of  task  processing,  and  thus  is  widely  used [22].  This
study  introduces  the  attention  mechanism  into  the
LSTM-based TCM constitution prediction model, aiming
to optimize its ability to process constitution-related fea-
tures  while  maintaining  model  performance.  This  inte-
gration is expected to better adapt to the complex and di-
verse scenarios encountered in TCM constitution predic-
tion,  enhancing  the  model’s  practical  applicability  and
predictive accuracy. 

α β δ ω

2.4.2 GWO　In GWO, there are different grey wolf  cate-
gories  in  the  initialized  grey  wolf  population,  namely  al-
pha ( )，beta ( )，delta ( ), and omega ( ) [23].  The so-
cial  status  of  different  categories  is  different  (Figure  3).
During  the  hunting  process,  under  the  leadership  of α-
wolves, they tacitly track their prey and closely cooperate
to make prey gradually incapacitated through pursuit, en-
circlement  and  harassment.  Finally,  attack  decisively  to
complete the hunt [24].
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Figure 3   Grade distribution map of the grey wolf popula-
tion
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The  GWO  mimics  the  hunting  behavior  of  grey  wolf
packs, utilizing the leadership structure ( , , and ) and
the  positional  adjustments  of  the  wolves [25].  It  starts
with a population of  grey wolves randomly placed in the
search space. Each wolf’s performance is evaluated using
a  fitness  function,  selecting  the  top  three  to  guide  the
search. The algorithm employs two coefficient vectors, 
and ,  to  adjust  the  search  step  size  and  randomness.
Vector  promotes  exploration  early  on  and  refines
search  later,  while  vector  introduces  diversity.  The
distances between  wolves and the leaders are calculat-
ed to update the  positions toward the optimal solution.
As  iterations  progress,  the  positions  of  the , ,  and 
wolves are updated, influencing the  wolves’ positions to
gradually  approach  the  optimal  solution.  The  algorithm
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Figure 2   Schematic diagram of the DBN structure based
on multi-class classification
In the input & layerwise training stage, the data enters the input
layer, and the RBMs of each layer take the output of the RBM of
the  previous  layer  (the  first  layer  is  the  original  data)  as  input,
and are trained with the contrastive scattering (CD or CD-k) al-
gorithm.  The  extracted  hierarchical  features  are  propagated  to
the  subsequent  RBM  layers  to  build  a  deep  network,  and  each
layer captures unique somatic feature information at the corre-
sponding level. Feature extraction & propagation and deep net-
work  formation  &  characteristic  capture  are  completed  in  this
process.  Next,  replacement  &  prediction  is  performed  to  re-
place  the  last  layer  of  the  DBN with  a  multi-label  output  layer,
and the algorithm is applied to predict multiple body labels. The
algorithm  is  used  to  predict  multiple  body  labels.  Loss  &  opti-
mization  is  performed  using  multi-class  cross-entropy  loss
function,  optimized  by  gradient  descent/adam  algorithm,  and
fine-tuned by using TCM constitution data. Finally, backpropa-
gation  &  enhancement  adjusts  the  weights  and  biases  to  im-
prove  the  accuracy  of  the  model's  output  of  multiple  body  la-
bels to achieve accurate prediction of TCM constitution.
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α

concludes  when  the  maximum  iterations  are  reached,
outputting  the  position  of  the  wolf  as  the  final  opti-
mized result. 

2.4.3 PSO　 The  PSO  algorithm  is  a  swarm  intelligence
optimization  algorithm  for  evolutionary  mechanisms
based on the study of migration and foraging behavior of
birds [26, 27].  In  the  standard  application  of  the  PSO  algo-
rithm, each individual in the swarm is transformed into a
particle  in  a  multidimensional  search  space,  with  their
unique attributes characterized by three dimensions: po-
sition,  velocity,  and  fitness [28].  The  fitness  quantitatively
evaluates  the  particle  performance  and  reflects  the  de-
gree  to  which  particles  approach  the  optimal  solution.
The  PSO  algorithm  can  guide  particles  to  approach  the
optimal solution more accurately through such a multidi-
mensional  description.  The  specific  algorithm  flow  dia-
gram is shown in Figure 4. 

2.5 Evaluation indicators

It's essential to define the key definitions of false negative
(FN), true negative (TN), false positive (FP), and true pos-
itive (TP). FN means wrongly predicting a sample as neg-
ative,  TN is correctly predicting a sample as negative,  FP
refers to wrongly predicting a sample as positive, and TP
indicates correctly predicting a sample as positive.

The performance evaluation indicators for  the classi-
fication prediction model in this study are as follows:

Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

F1-score = 2 × (Precision × Recall)/(Precision + Recall)
Receiver operating characteristic (ROC) curve: drawn

with true positive rate (TPR) as the vertical axis and false
positive rate (FPR) as the horizontal axis [29].

Precision-recall  (PR)  curve:  drawn  with  precision  as
the vertical axis and Recall as the horizontal axis.

Area under the curve (AUC) value: represents the area
under  the  ROC  curve  (AUC-ROC)  or  the  area  under  the
PR curve (AUC-PR), ranging from 0 to 1. 

3 Results
 

3.1 Data distribution of the nine constitution

A total of 31 655 constitution identification datasets were
obtained.  The  distribution  of  data  of  the  nine  constitu-
tion types is presented in Table 1. 

3.2 Construction and implementation of each model

In  the  TCM  constitution  prediction,  the  relationship  be-
tween the constitution and its influencing factors is non-
linear.  MLP  can  approximate  and  realize  complex  map-
pings.  Therefore,  this  experiment  constructed  the  MLP
constitution classification prediction model based on the
scikit-learn  framework  and  showed  it  with  the  balanced
constitution  as  an  example  (the  same  below).  Prelimi-
nary  preprocessing  steps  included  data  normalization,
one-hot  encoding  for  the  target  variable  constitution
type,  the  application  of  softmax  function  in  the  output
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Figure 4   Flow diagram of PSO algorithm
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layer,  the utilization of  a weight initializer for neural  lay-
ers,  the  adoption  of  the  Adam  optimizer  during  model
compilation,  and  the  reduction  of  hidden  layer  parame-
ters  in  the  neural  network  and  fine-tuning  of  model  pa-
rameters  through  the  integration  of  weight  initializers
and  the  Adam  optimizer.  Then,  we  compared  the  loss
and  accuracy  values  under  different  training  conditions.
Based on this analysis, we confirmed the selection of the
MLP  model  utilizing  both  a  weight  initializer  and  the
Adam optimizer for optimal performance. The multi-lay-
er perceptron model structure was designed with five lay-
ers,  including  one  input  layer,  three  hidden  layers,  and
one output layer (Figure 5A).

According to the feature extraction completed in sec-
tion  2.2,  in  the  input  layer,  this  study  selected  18  items,
including solar terms, gender, whether it is only-child sta-
tus,  final  educational  attainment,  mode  of  birth,  feeding
methods  within  four  months  after  birth,  allergy  history,
preference  for  light-taste  food,  preference  for  spicy  food
and  love  for  eating  spicy  food,  sleeping  habits,  exercise
habits,  emotional  state,  pressure  situation,  family  atmo-
sphere, overtime work situation, titile-2, title-27, and title-
53, as the input layer of MLP model to predict whether it
was  a  balanced  constitution  or  not.  The  expression  is
shown  in  Equation  (3).  The  output  layer  was  configured
with  two  neurons,  representing  the  classification  results
of  a  balanced constitution and a  non-balanced constitu-
tion.

X f =
(

xsolor term, xgender, xonly-child status, · · · , xtitle-2, xtitle-27, xtitle-53

)
(3)

Multiple  trials  determined  the  number  of  neurons  in
the hidden layer and the ReLU function is  chosen as the
activation  function.  The  softmax  function  is  used  in  the
output  layer.  The  loss  function  is  binary  cross  entropy.
With  Adam  algorithm,  we  adjusted  the  learning  rate  to
optimize  the  model  performance.  During  the  training
process, parameters such as epochs and batch_size were
adjusted several times, and different test_sizes to achieve
the best model training performance.

Before  building  the  LSTM  network  structure,  the
Z-score  standardization  method  was  applied  to  process

constitution  data  and  transformed  it  into  a  standard
normal  distribution.  Meanwhile,  this  study  aimed  to
achieve a balanced 0 − 1 distribution in the TCM consti-
tution types column by adjusting sample weights and em-
ploying  undersampling  techniques.  Subsequently,  an
LSTM-based  prediction  model  was  constructed  for  TCM
constitution  prediction  (Figure  5B).  The  input  layer  re-
ceived  the  data  and  transformed  the  dimensions,  the
LSTM layer served as an intermediate layer to extract key
features  and  applied  the  dropout  technique  to  prevent
overfitting (Figure 5C) [30]. Finally, the output layer gener-
ated the prediction results.

There were numerous parameters of the LSTM model,
and  parameters  that  significantly  affected  performance,
such  as  learning  rate,  which  needed  to  be  optimized
through  debugging  and  10-fold  cross-validation.  The
training and testing sets were split in 9 : 1, 8 : 2, and 7 : 3
ratios, respectively. During the training process, the mod-
el  underwent  forward  propagation,  loss  computation,
sample  weight  calculation,  cost-sensitive  learning,  back-
propagation,  and  optimization,  with  the  model  being
evaluated at the end of each training epoch to output the
precision, recall,  and F1-score. The sample weights were
computed using the torch.tensor method, and cost-sensi-
tive  learning  was  implemented  through  the  torch.mean
method, considering the sample weight parameters spec-
ified in Table 2 for the nine constitution datasets.

Two models  were constructed for  multi-class  and bi-
nary  classification  problems.  The  former  used  numbers
from 0 to 8 to sequentially quantify different TCM consti-

 

Table 1   Data distribution of the nine constitution types

Constitution type Data distribution

Balanced 10 959 (34.6%)

Qi deficiency 6 586 (20.8%)

Yang deficiency 2 837 (9.0%)

Yin deficiency 1 496 (4.7%)

Phlegm dampness 1 693 (5.4%)

Damp heat 2 070 (6.5%)

Stagnant blood 2 333 (7.4%)

Qi stagnation 2 730 (8.6%)

Specific-inherited predisposition 951 (3.0%)
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Figure  5   Construction  and  implementation  of  each
model
A, network structure of MLP for TCM constitution classification
prediction model (balanced constitution).  B,  network structure
of  LSTM  for  TCM  constitution  classification  prediction  model.
C,  a  comparison  of  the  differences  before  and  after  using  the
dropout  technique  in  the  hidden  layer  of  the  LSTM  model.
D  and  E,  multi-label  and  two-label  classification  DBN  model
network structure diagram, respectively.
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tutions to avoid index overbounds, while the latter adopt-
ed Z-score  normalization  to  standardize  the  data.  Both
types  of  models  incorporated  the  undersampling  tech-
nique  to  balance  the  data  distribution.  Besides,  the  for-
mer  (Figure  5D)  trained  RBM  layer  by  layer  to  capture
nonlinear  relationships,  introduced  the  dropout  tech-
nique and regularization terms to improve performance,
and  output  the  probabilities  using  the  softmax  function;
the  latter  (Figure  5E)  fine-tuned  weights  through  back-
propagation (BP) layers  to  optimize performance [31] and
used the sigmoid function to output probabilities. 

3.3 Prediction performance analysis of each model

In this case,  the precision, recall,  F1-score,  and accuracy
were used to evaluate model performance. The output re-
sults  of  three  TCM  constitution  prediction  models  are
shown in Table 3 – 5.
 
 

Table  3   Performance  evaluation  of  MLP  classification
prediction models for the nine TCM constitutions

Constitution type Precision Recall F1-score Accuracy

Balanced 0.773 8 0.777 9 0.773 9 0.777 9

Qi deficiency 0.707 1 0.794 0 0.721 1 0.794 0

Yang deficiency 0.864 2 0.909 3 0.875 8 0.909 3

Yin deficiency 0.911 8 0.945 8 0.927 4 0.945 8

Phlegm dampness 0.897 5 0.935 1 0.913 7 0.935 1

Damp heat 0.878 3 0.929 7 0.900 5 0.929 7

Stagnant blood 0.880 3 0.920 7 0.885 4 0.920 7

Qi stagnation 0.839 6 0.916 3 0.876 2 0.916 3

Specific-inherited
predisposition

0.971 0 0.972 2 0.971 6 0.972 2

 

According  to  the  MLP  model,  the  true  and  predicted
value sequence was calculated for each constitution, and
100 cases of data were randomly selected to draw the fit-
ting  curve  (Figure  6A).  The  threshold  of  predicted  value
was  set  at  0.5.  When  y_pred  is  higher  than  0.5,  it  is  pre-
dicted to be XX constitution; on the contrary, it is non-XX
constitution.

According  to Table  3,  applying  the  MLP  model  for
TCM  constitution  prediction  demonstrated  outstanding
classification performance on the dataset of the nine con-
stitution  types.  Specifically,  the  model  achieved  high
scores of critical evaluation metrics such as accuracy, re-
call, and F1-score, validating its effectiveness in constitu-
tion prediction. Notably, when applied to the specific-in-
herited predisposition constitution dataset, the model ex-
hibited  a  remarkable  precision  rate  of 0.972 2,  accompa-
nied by an F1-score of 0.9716.

As  shown  in Figure  6B and 6C,  the  AUC  value  of  the
LSTM  prediction  model  for  the  damp  heat  constitution
was about 0.68, indicating room for improvements in the
prediction  performance  of  the  damp  heat  constitution
dataset.

DBN  multi-label  output  model  experiments  com-
pared the prediction effect under different test_sizes. Tak-
ing test_size = 0.3 as an example, this study randomly se-
lected  100  cases  of  data  to  draw  the  fitting  curve  of  the
true  value  and  the  predicted  value,  as  well  as  the  error
curve  of  the  two,  showing  in  detail  the  matching  degree
between  the  true  value  and  the  predicted  value  and  the
distribution of the error (Figure 6D and 6E).

The  experimental  results  reveal  that  the  accuracy
and AUC of  9  :  1,  8  :  2,  and 7 :  3  were 0.42 (0.834 4),  0.43

 

Table 2   Sample weight parameters for the nine constitu-
tions datasets

Constitution type
Sample weight

parameter (m, n)

Balanced (1.00, 2.00)

Qi deficiency (0.82, 3.82)

Yang deficiency (0.80, 9.20)

Yin deficiency (0.75, 20.25)

Phlegm dampness (0.85, 17.85)

Damp heat (0.63, 14.37)

Stagnant blood (0.97, 25.03)

Qi stagnation (0.62, 10.62)

Specific-inherited predisposition (0.70, 32.30)

 

Table  4   Performance  evaluation  of  LSTM  classification
prediction models for the nine TCM constitutions

Constitution type Precision Recall F1-score Accuracy

Balanced 0.672 8 0.679 1 0.676 0 0.780 2

Qi deficiency 0.669 0 0.562 7 0.611 2 0.627 5

Yang deficiency 0.667 8 0.705 3 0.686 0 0.676 1

Yin deficiency 0.655 4 0.717 8 0.658 2 0.670 5

Phlegm dampness 0.808 4 0.750 0 0.778 1 0.772 9

Damp heat 0.642 9 0.655 3 0.649 0 0.647 3

Stagnant blood 0.721 5 0.686 7 0.703 7 0.691 6

Qi stagnation 0.758 2 0.721 3 0.739 3 0.732 6

Specific-inherited
predisposition

0.878 4 0.896 6 0.887 4 0.884 4

 

Table 5   Accuracy and AUC of the DBN two-label output
model for the nine TCM constitutions

Constitution type Accuracy AUC

Balanced 0.780 0 0.851 8

Qi deficiency 0.650 0 0.701 8

Yang deficiency 0.740 0 0.789 9

Yin deficiency 0.840 0 0.906 7

Phlegm dampness 0.810 0 0.877 6

Damp heat 0.600 0 0.669 5

Stagnant blood 0.720 0 0.781 9

Qi stagnation 0.820 0 0.869 5

Specific-inherited predisposition 0.900 0 0.948 7
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(0.827 0),  and  0.44  (0.833 6),  respectively.  The  classifica-
tion performance of the model is adequate, but the recog-
nition accuracy is not ideal.

The experiment  conducted a  comparative  analysis  of
the  performance  of  the  DBN  model  under  a  multi-label
output configuration, particularly focusing on various da-
ta splitting ratios, emphasizing test_size = 0.3. This inves-
tigation  unveiled  both  the  remarkable  performance  and
underlying  limitations  of  the  model.  By  visually  present-
ing the fitting curves between true and predicted values,
along with error distribution plots, we clearly understood
the  model’s  robustness  in  the  overall  classification  task.
However, it was also observed that the model’s precision
in individual predictions had not yet to reach an optimal

level.  This  discovery  prompted  a  deeper  delve  into  the
reasons behind such performance.

The  DBN  two-label  output  model  used  a  specific-in-
herited predisposition constitution as an example to cre-
ate a bar chart depicting the true value and the predicted
value.  This  visual  representation  illustrates  the  data  vol-
ume and proportions of each indicator (Figure 7).

 
 

FN 16 (4.2%)

Sankey diagram (binary classification)

TN

FP

TP

22 (5.8%)

174 (45.7%)

169 (44.4%)

Count
 
Figure 7   The true and predicted value of specific-inher-
ited predisposition constitution dataset (test_size = 0.2)
 

The  accuracy  and  AUC  were  used  as  indicators  for
model  evaluation.  The  accuracy  for  each  constitution
ranged  from  0.6  to  0.9,  and  the  AUC  was  generally  high,
indicating that the model performed well in TCM consti-
tution classification prediction (Table 5).

Table 5 presents a  comprehensive performance eval-
uation results of a DBN with a two-label output model in
identifying the nine TCM constitution types, encompass-
ing  accuracy  and  AUC.  These  metrics  provide  valuable
insights  into  the  model’s  varying  performance  across
constitution types. Specifically, the balanced constitution,
Yin  deficiency  constitution,  phlegm  dampness  constitu-
tion, and Qi stagnation constitution exhibit relatively high
accuracy and AUC, indicating the model’s success in de-
tecting  these  types.  Conversely,  the  Qi  deficiency consti-
tution, Yang deficiency constitution, damp heat constitu-
tion, and stagnant blood constitution yielded lower accu-
racy  and  AUC,  highlighting  the  challenges  faced  by  the
model  in  recognizing  these  complex  or  symptomatically
overlapping constitution types. 

3.4 Comparison of models before and after optimization
 

3.4.1 Model optimization based on AM　This study em-
ployed  principal  component  analysis  (PCA)  for  feature
extraction  to  enhance  the  model’s  performance.  Using
damp  heat  constitution  as  an  example,  a  longitudinal
comparison  of  the  optimized  and  pre-optimized  LSTM
model  (Table  6)  revealed  that  the  pre-optimized  model
performed better in precision, recall, F1-score, and accu-
racy.  Additionally,  the  AUC  reached 0.859 6,  indicating
excellent classification performance. The results present-
ed in Table 6 underscore the substantial enhancement in
prediction  accuracy  across  various  constitution  types
achieved  by  the  LSTM-attention  model  compared  with
the baseline LSTM model.
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Figure 6   Analysis of the prediction results of each model
A,  fitting  curve  of  true  and  predicted  values  for  the  balanced
constitution dataset. The grey line is the true value, and the blue
line is the predicted value. B and C, ROC curve and PR curve of
damp  heat  constitution  dataset  (test_size  =  0.1),  respectively.
D and E, fitting curve and error scatter plot of true and predict-
ed  value  for  the  nine  TCM  constitutions,  respectively.  The  yel-
low line represents the true value, and the green line represents
the  predicted  value.  The  difference  calculation  formula  of  the
error value in Figure 6E: difference = Y_pred – Y_true. The hori-
zontal axis represents the data index value, and the vertical axis
represents  the  error  value  between  the  predicted  and  true  val-
ues.
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To  further  analyze  the  errors,  this  study  plots  the
optimized  confusion  matrix  and  ROC  curve  (Figure  8).
The  results  indicate  that  the  false  positive  class  rate  of
the  optimized  model  has  decreased  to  18.8%,  resulting
in  more  accurate  identification  of  negative  class  sam-
ples.  Additionally,  the  AUC  increased  to  0.86,  a  19.8%
improvement, holding a promise for more precise identi-
fication  of  both  positive  and  negative  class  samples.  In
particular,  it  performed  even  better  when  dealing  with
unbalanced data. The ROC curve was closer to the top left
corner, indicating a low FP class rate and a high TP class
rate, significantly improving model performance.
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Figure 8   Confusion matrix and ROC curve of optimized
damp heat constitution dataset
A,  confusion  matrix.  B,  ROC  curve.  The  test  samples  collected
before and after optimization are consistent.
  

3.4.2 Model optimization based on swarm intelligence op-
timization  algorithm　 This  experiment  employed  the
swarm  intelligence  optimization  algorithm  to  optimize
the  DBN  multi-label  output  model.  Following  PCA  fea-
ture  extraction,  the  model  was  trained by  debugging hy-
perparameters such as the number of hidden layer units,
the precision, recall, F1-score, and accuracy were used to
assess  the performance of  the GWO-DBN and PSO-DBN
models.  This  paper  took  test_size  =  0.1  as  an  example,
and  the  evaluation  results  after  optimization  are  shown
in Table 7. 

3.5 Error analysis results

According  to Table  3,  the  balanced  constitution  confu-
sion matrix was plotted for error analysis (Figure 9). It can

be  concluded  from Figure  9A that  the  model  had  the
problem of more FP in prediction, while both the accura-
cy and recall were low, indicating that the model has diffi-
culties  in identifying positive class  samples.  This  may be
related  to  the  imbalance  of  data  categories,  where  the
overabundance of negative samples caused the model to
favor negative class predictions.

According  to  the  experimental  evaluation  results  in
Table 4, taking the Yang deficiency constitution, Yin defi-
ciency constitution, and damp heat constitution as exam-
ples,  the  confusion  matrix  of  the  three  datasets  was
drawn  for  error  analysis.  From  the  confusion  matrix  in
Figure 9B – 9D, the model accuracy of the damp heat con-
stitution  dataset  was  relatively  low.  This  means  that
among  the  samples  predicted  as  positive  classes  by  the
model,  the  proportion  of  TP  classes  was  relatively  low.
Recall  reflects  the  model’s  ability  to  recognize  positive
class samples. The recall rate of the current model of the
damp  heat  constitution  dataset  was  low,  indicating  that
the model missed many positive class samples. The mod-
el  may  need  to  be  improved  to  increase  the  recognition
rate of positive classes. Among them, the false alarm rates
of the model for the Yang deficiency constitution, Yin de-
ficiency  constitution,  and  damp  heat  constitution  data-
sets  reached  33.1%,  20.9%,  and  42.5%,  respectively.  That
was  the  situation  of  wrongly  predicting  negative  class
samples  as  positive  classes  were  relatively  frequent,
which  may  lead  to  unnecessary  costs  or  interference  in
practical applications. Generally, the model accuracies of
the Yang deficiency constitution, Yin deficiency constitu-
tion, and damp heat constitution datasets were relatively
low.  For  the  Yang  deficiency  constitution,  the  F1-score
was 0.686 0;  for  the  Yin  deficiency  constitution,  it  was
0.658 2; and for the damp heat constitution, it was 0.649 0.
This suggests an imbalance between the precision and re-
call, indicating the need for further model optimization.

The  confusion  matrix  was  also  generated  for  error
analysis  (Figure  9E – 9G).  The  multi-label  output  confu-
sion  matrix  depicted  the  classification  performance  un-
der different test_sizes, and the color depth indicating the
number  of  instances.  For  example,  the  two-label  output
model classified stagnant blood constitution into positive
and  negative  classes  (Figure  9H).  As Figure  9E – 9H
shows,  the  multi-label  output  model  exhibited  more

 

Table 6   Longitudinal comparison results of LSTM mod-
els before and after optimization

Constitution type LSTM LSTM-attention

Balanced 0.780 2 0.818 4

Qi deficiency 0.627 5 0.616 8

Yang deficiency 0.676 1 0.767 6

Yin deficiency 0.798 0 0.753 3

Phlegm dampness 0.772 9 0.817 1

Damp heat 0.647 3 0.811 6

Stagnant blood 0.691 6 0.749 5

Qi stagnation 0.732 6 0.745 4

Specific-inherited predisposition 0.884 4 0.874 3

 

Table  7   Evaluation  results  of  DBN  multi-label  output
model optimized based on GWO and PSO algorithms

Algorithm

PCA
extracted

feature
number

Precision Recall F1-score Accuracy

GWO
30 0.573 0 0.548 3 0.540 8 0.548 3

55 0.543 3 0.562 9 0.551 1 0.562 9

PSO
30 0.165 0 0.162 4 0.152 6 0.360 4

55 0.181 9 0.185 6 0.179 9 0.369 5
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significant  errors  in  dealing  with  rare  and  similar  TCM
constitutions,  with  the prediction error  increasing as  the
test_size rose. This might be related to the uneven distri-
bution  of  the  dataset,  the  alignment  between  the  model
complexity  and  data  volume,  and  parameter  optimiza-
tion. 

3.6 Performance  comparision  of  TCM  constitution  pre-
diction of models

Classification prediction performance is  the key index to
measure  the  quality  of  the  model.  In  model  training,  its
classification  and  prediction  performance  might  be  af-
fected by many factors.

As  shown  in Figure  10A,  the  three  models  showed
different prediction performances in the face of  different
constitution types.  The MLP model  presented a  high ac-
curacy  in  multiple  constitution  types,  especially  in  the
prediction  of  Yin  deficiency  constitution,  phlegm  damp-
ness constitution, damp heat constitution, stagnant blood
constitution,  and Qi  stagnation constitution,  and its  pre-
diction  accuracy  is  more  than  90%,  showing  its  advan-
tages  in  TCM  constitution  prediction  tasks.  In  contrast,
although  the  LSTM  model  performed  reasonably  well  in
the  prediction  of  balanced  constitution  and  specific-in-
herited  predisposition  constitution,  with  accuracy  of
0.780 2 and 0.880 4,  respectively,  the  accuracy  of  other
constitution  types  were  relatively  low,  especially  in  the
prediction  of  Qi  deficiency  constitution  and  damp  heat
constitution,  with  accuracies  of 0.627 5 and  0.647  3,  re-
spectively. The DBN model for binary classification prob-
lem was outstanding in  predicting Yin deficiency consti-
tution and specific-inherited predisposition constitution,
with  prediction  accuracies  of  more  than  80%.  Still,  the

accuracies  of  the  damp  heat  constitution  and  stagnant
blood  constitution  were  low,  especially  the  damp  heat
constitution, with an accuracy rate of only 0.60. Based on
the model prediction performance analysis in section 3.3,
the DBN model for the multi-class classification problem
showed a stable AUC of around 0.82 across different par-
titioning  ratios.  Yet,  the  model’s  prediction  accuracy  re-
mained relatively low, falling below 0.50.
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Figure 9   Error analysis of each model on different TCM constitutions datasets
A, confusion matrix for balanced constitution of the MLP model. B – D, confusion matrix for Yang deficiency constitution, Yin deficien-
cy constitution, and damp heat dataset of the LSTM model, respectively. Label 1 is the positive class and 0 is the negative class. E – G,
confusion matrix for the multi-label output DBN model case with test_sizes of  0.1,  0.2,  and 0.3,  respectively.  H, confusion matrix for
stagnant blood constitution dataset of the two-label output DBN model.
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Figure 10   Comparative analysis of the performance be-
fore and after model optimization
A, comparison of accuracy rate distribution of the nine constitu-
tions on different models. B, comparison and analysis of evalua-
tion results of TCM constitution datasets on different models.
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In  the  DBN  model  optimization,  the  GWO  and  PSO
algorithms  were  introduced  in  this  paper.  By  simulating
the behavior of a grey wolf, the GWO algorithm effective-
ly  adjusted  the  key  parameters,  such  as  the  number  of
hidden layer nodes and learning rate of  the DBN model,
increased  the  model  prediction  accuracy  to  56%,  and
reduced  the  risk  of  overfitting.  However,  the  PSO  algo-
rithm performed poorly in DBN model optimization, and
the prediction accuracy rate dropped to 37%, which may
be  limited  by  its  searchability  and  convergence  speed  to
find  the  global  optimal  solution.  Combining  the  two
algorithms,  the  prediction  accuracy  of  the  GWO-PSO-
DBN  model  was  54%,  which  did  not  exceed  that  of  the
GWO-DBN  model,  indicating  that  the  GWO  algorithm  is
more  critical  in  the  DBN  model  optimization  (Table  7).
Figure 10B compares the effects of different optimization
algorithms on the DBN model. 

4 Discussion
 

4.1 In-depth  analysis  of  the  underlying  reasons  for  per-
formance differences

In the process of predicting TCM constitutions, there are
aspects that need improvement in the models. For exam-
ple,  the classification performance for  some constitution
types  like  the  balanced  constitution  and  Qi  deficiency
constitution still  requires enhancement.  The reasons be-
hind  this  involve  aspects  such  as  model  complexity  and
parameter settings. The complexity of multi-label classifi-
cation itself increases the difficulty of the task. Besides, is-
sues  like  data  imbalance,  limited  sample  size,  and  the
sensitivity  of  deep  learning  models  to  hyperparameters
all  have  an  impact  on  the  model’s  ability  to  predict  mi-
nority  categories,  its  generalization  ability,  and  predic-
tion accuracy. Moreover, the overlap of symptoms among
different constitution types and the variability within the
same constitution type also pose challenges for the mod-
el to make accurate judgments.

When  optimizing  the  multi-label  output  tasks  of  the
DBN,  significant  differences  can  be  observed  in  the  ef-
fects  of  the  GWO  algorithm  and  the  PSO  algorithm.  On
one hand, the GWO algorithm simulates the social struc-
ture  of  grey  wolves  and  adopts  a  hierarchical  search
method,  which  enables  it  to  balance  global  exploration
and  local  search.  During  the  iteration  process,  it  can
adaptively adjust the control parameters, making it more
suitable for dealing with complex multi-modal problems.
On the other hand, the PSO algorithm relies on the com-
petition  and  cooperation  among  particles,  as  well  as  the
individual  and  global  historical  optimal  solutions  to
guide  the  search  direction,  and  it  is  prone  to  falling  into
local  optimal  solutions.  When  dealing  with  the  complex
optimization  challenges  brought  by  multi-label  output
models, its global search ability is relatively weak, and the
performance  of  this  algorithm  is  greatly  affected  by  pa-
rameter adjustment. 

4.2 Theoretical explanation of the advantages and limita-
tions of the models
 

4.2.1 LSTM-attention  model　 (i)  Advantages.  By  intro-
ducing  the  AM,  this  model  can  dynamically  allocate
weights  according  to  the  correlation  between  the  input
data and the prediction target, focus on key features, and
filter  out  redundant  information.  Compared  with  the
LSTM  model  before  optimization,  its  average  prediction
accuracy  has  increased  by  4.24%,  and  the  generalization
ability  of  the  model  in  different  data  distributions  and
in  the  presence  of  noisy  data  has  also  been  enhanced.
(ii)  Limitations.  This  model  has  problems  such  as  high
computational complexity and low operational efficiency,
which will lead to an increase in training time, limited in-
ference speed, and also increase the difficulty and cost of
parameter adjustment and optimization. In addition, this
model  is  sensitive  to  noisy  data  and  has  certain  limita-
tions  in  capturing  long-term  dependencies,  and  highly
depends  on  high-quality  data  annotation.  Otherwise,  it
will affect the learning effect and prediction accuracy. 

4.2.2 The situation of GWO and PSO algorithms in opti-
mizing the DBN model　(i)  GWO. Its  advantages are re-
flected  in  its  powerful  global  search  ability  and  fast  con-
vergence speed, which are beneficial for determining the
optimal  parameter  configuration  in  the  initial  stage  of
constitution data analysis, thereby improving the predic-
tion accuracy of the DBN model. However, this algorithm
faces the problem of  parameter  sensitivity.  Given the di-
versity and complexity of constitution data, precise explo-
ration of the parameter space is required. Otherwise, the
algorithm  is  likely  to  fall  into  local  optimal  solutions,  or
the search process may be lengthy and inefficient. More-
over,  when  facing  high-dimensional  fitness  datasets,  the
search  space  of  this  algorithm  will  expand  dramatically,
putting pressure on limited computing resources and in-
creasing  the  risks  of  falling  into  local  optimal  solutions
and soaring computing costs.  Critically,  the dynamic na-
ture  of  fitness  data  imposes  higher  requirements  on  the
GWO  algorithm,  requiring  it  to  find  the  current  optimal
solution  and  predict  and  adapt  to  future  data  trends.
However,  there  are  still  deficiencies  in  this  regard  at
present.  (ii)  PSO. Although this algorithm has the poten-
tial for global optimization, its limitations are quite obvi-
ous  in  the  context  of  constitution  data  analysis.  Prema-
ture convergence is the primary problem. Especially when
there are noise and outliers in the data, these factors can
easily  mislead  the  particle  swarm  to  move  in  the  wrong
direction,  thus  prematurely  terminating  the  search  pro-
cess.  In  addition,  fine-tuning  the  parameters  of  the  PSO
algorithm  is  a  complex  and  delicate  task,  and  different
parameter  combinations  have  unpredictable  impacts  on
the  algorithm’s  performance,  bringing  many  challenges
to  practical  applications.  More  importantly,  this  algo-
rithm  tends  to  converge  rapidly  towards  the  current
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optimal solution, which will lead to a rapid loss of popu-
lation diversity. In the context of constitution data, the re-
duction of population diversity means that the algorithm
may  overlook  potential  better  solutions,  especially  those
hidden  in  complex  correlation  patterns.  Therefore,  its
overall  performance is often not as stable and reliable as
that of the GWO algorithm. 

4.3 Application value and limitations

These  models  and  optimization  algorithms  have  certain
value  in  the  prediction  of  TCM  constitutions.  For  exam-
ple,  the LSTM-attention model  helps to promote the de-
velopment of personalized medicine and the moderniza-
tion process of TCM practice. Selecting appropriate opti-
mization  algorithms  can  improve  the  prediction  accura-
cy  and generalization ability  of  the  model,  thus  assisting
in the classification and prediction of TCM constitutions.

However, each model and algorithm has certain limi-
tations.  For  example,  due  to  its  high  computational  re-
quirements  and  strict  data  requirements,  the  LSTM-
attention  model  is  limited  in  application  scenarios  that
require quick responses.  Whether used alone or  in com-
bination,  the GWO and the PSO algorithms will  face  dif-
ferent  challenges  when  dealing  with  the  complexity  of
constitution  data,  thus  affecting  the  accuracy  and  effi-
ciency of data analysis. 

4.4 Future improvement directions
 

4.4.1 Model  level　 It  is  planned  to  optimize  the  overall
performance of TCM constitution prediction by rebalanc-
ing  training  data,  adjusting  model  parameters,  integrat-
ing new features or algorithms, etc. For example, new fea-
ture extraction methods can be adopted to reduce the er-
ror rate of the model and improve its accuracy and relia-
bility  in  practical  applications.  In  addition,  considera-
tions can also be given to increasing the data volume, op-
timizing the model structure, adjusting hyperparameters,
and applying advanced feature extraction methods, or us-
ing ensemble learning methods to optimize the classifica-
tion accuracy of the DBN model. 

4.4.2 Algorithm  level　 Future  research  can  further  ex-
plore  and  optimize  existing  algorithms,  combine  them
with advanced technologies such as feature selection and
ensemble  learning,  and  explore  more  advanced  opti-
mization  algorithms  or  hybrid  strategies.  The  focus
should be on solving key problems such as effectively bal-
ancing the contributions of  each part  in the hybrid algo-
rithm,  dynamically  adjusting  the  parameters  of  each  al-
gorithm at different stages to adapt to the dynamic char-
acteristics  of  fitness  data,  and  overcoming  the  inherent
defects  of  a  single  algorithm,  such  as  premature  conver-
gence,  parameter  sensitivity,  and  loss  of  diversity.
Comprehensive  consideration  should  be  given  to  the

characteristics of data, the advantages and disadvantages
of algorithms, and the requirements of practical applica-
tions  to  provide  strong  support  for  the  in-depth  mining
and precise analysis of constitution data. 

5 Conclusion

This study constructed three deep learning models (MLP,
LSTM, and DBN) for TCM constitution prediction. Before
optimization,  MLP  excelled  in  most  constitution  types,
LSTM  showed  potential  despite  data  lacking  temporal
features,  and  DBN  had  discriminative  power  but  faced
limitations.  After  optimization,  the  AM-enhanced  LSTM
improved  accuracy,  while  DBN  with  GWO  rose  to  56%
and  GWO-PSO-DBN  reached  54%.  The  unique  features
and limitations of each model guide future optimizations.
This  study  provides  a  new  idea  for  exploring  the  intelli-
gent  prediction  and  optimization  of  TCM  body  mass
based  on  deep  learning  to  enable  accurate  constitution
prediction.  Future efforts  in model fusion,  data handling
and  feature  engineering  will  improve  performance,  en-
abling  real-time  health  insights  and  personalised  TCM
care,  which  are  crucial  for “preventive  treatment  of  dis-
ease” and improving public health. 
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基于深度学习的中医体质预测模型构建及优化研究

张新格, 许强, 温川飙*, 罗悦*

成都中医药大学智能医学学院, 四川 成都  611137, 中国

 
【摘要】目的  为满足个性化健康服务需求，从深度学习角度挖掘中医体质数据特征并构建模型以探索预测

新方法。 方法  收集并整理 2020 年 1 月 21 日至 2022 年 4 月 6 日期间成都中医药大学学生按二十四节气划

分的数据。这些数据用于识别 9 种中医体质，包括平和质、气虚质、阳虚质、阴虚质、痰湿质、湿热质、血

瘀质、气郁质和特禀质。利用深度学习算法，构建多层感知机（MLP）、长短期记忆网络（LSTM）和深度

置信网络（DBN）中医体质预测模型。同时本文引入注意力机制（AM）、灰狼优化算法（GWO）和粒子群

优化算法（PSO）对以上 3 种模型进行优化。利用精确率、准确率、召回率和 F1 分数评估优化前后的模型

性能。 结果  该研究共分析了 31 655 份数据。（1）优化前：MLP 模型除平和质和气虚质外的预测准确率均

达 90% 以上；LSTM 模型预测准确率均达到 60% 以上，表明其在中医体质预测任务中的潜力可能因数据缺

乏显著时序特征而未被充分挖掘；DBN 模型在处理二分类问题时，除在气虚质和湿热质的体质预测上稍显

逊色，预测准确率分别为 65% 和 60%，其余体质的预测准确率和模型受试者工作特征（ROC）曲线下面积

（AUC）分别达到 70% 以上和 0.78 以上，表明模型具有一定的体质区分能力，但其在特定体质的特征处理

上存在局限，模型性能仍有提升空间；处理多分类问题时，DBN 模型的预测准确率不足 50%。（2）优化

后：经 AM 优化后的 LSTM 模型预测准确率达 75% 以上，但气虚质、血瘀质和气郁质除外；DBN 模型处理

多分类问题时，分别引入 GWO 和 PSO 算法优化后的模型，前者预测准确率较优化前增至 56%，后者预测

准确率较优化前降至 37%。结合以上两种算法优化后的  GWO-PSO-DBN 模型预测准确率较优化前增至

54%。结论  本研究构建了 MLP、LSTM 和 DBN 模型来预测中医体质，并基于不同的优化算法对其进行了改

进。结果表明，MLP 模型具有较好的预测效果，LSTM 和 DBN 模型预测效果较好，但存在一定的局限性。

本研究为中医体质预测模型的建立和优化策略提供了新技术参考，为中医治未病提供了新思路。

【关键词】中医体质；深度学习；体质分类；预测模型；优化研究
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