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Objective  Clinical medical record data associated with hepatitis B-related acute-on-chronic
liver failure (HBV-ACLF) generally have small sample sizes and a class imbalance. However,
most machine learning models are designed based on balanced data and lack interpretability.
This  study  aimed  to  propose  a  traditional  Chinese  medicine  (TCM)  diagnostic  model  for
HBV-ACLF based on the TCM syndrome differentiation and treatment theory, which is clini-
cally interpretable and highly accurate.
Methods  We collected medical records from 261 patients diagnosed with HBV-ACLF, includ-
ing three syndromes: Yang jaundice (214 cases), Yang-Yin jaundice (41 cases), and Yin jaun-
dice (6 cases).  To avoid overfitting of  the machine learning model,  we excluded the cases of
Yin  jaundice.  After  data  standardization  and  cleaning,  we  obtained  255  relevant  medical
records  of  Yang  jaundice  and  Yang-Yin  jaundice.  To  address  the  class  imbalance  issue,  we
employed  the  oversampling  method  and  five  machine  learning  methods,  including  logistic
regression (LR), support vector machine (SVM), decision tree (DT), random forest (RF), and
extreme gradient boosting (XGBoost) to construct the syndrome diagnosis models. This study
used  precision,  F1  score,  the  area  under  the  receiver  operating  characteristic  (ROC)  curve
(AUC), and accuracy as model evaluation metrics. The model with the best classification per-
formance  was  selected  to  extract  the  diagnostic  rule,  and  its  clinical  significance  was  thor-
oughly  analyzed.  Furthermore,  we  proposed  a  novel  multiple-round  stable  rule  extraction
(MRSRE) method to obtain a stable rule set of features that can exhibit the model’s clinical in-
terpretability.
Results  The precision of the five machine learning models built using oversampled balanced
data exceeded 0.90. Among these models, the accuracy of RF classification of syndrome types
was 0.92, and the mean F1 scores of the two categories of Yang jaundice and Yang-Yin jaun-
dice were 0.93 and 0.94, respectively. Additionally, the AUC was 0.98. The extraction rules of
the RF syndrome differentiation model based on the MRSRE method revealed that the com-
mon features of Yang jaundice and Yang-Yin jaundice were wiry pulse, yellowing of the urine,
skin, and eyes, normal tongue body, healthy sublingual vessel, nausea, oil loathing, and poor
appetite.  The main features of Yang jaundice were a red tongue body and thickened sublin-
gual vessels, whereas those of Yang-Yin jaundice were a dark tongue body, pale white tongue
body,  white  tongue  coating,  lack  of  strength,  slippery  pulse,  light  red  tongue  body,  slimy
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tongue  coating,  and  abdominal  distension.  This  is  aligned  with  the  classifications  made  by
TCM experts based on TCM syndrome differentiation and treatment theory.
Conclusion  Our model  can be utilized for  differentiating HBV-ACLF syndromes,  which has
the potential to be applied to generate other clinically interpretable models with high accura-
cy on clinical data characterized by small sample sizes and a class imbalance.

 

 

1 Introduction

The inability of the liver to perform its normal metabolic
functions during liver failure can be lethal [1].  Four forms
of  liver  failure  are  recognized:  acute  liver  failure,  suba-
cute  liver  failure,  acute-on-chronic  liver  failure  (ACLF),
and  chronic  liver  failure  (CLF).  In  China,  liver  failure  is
mostly  caused  by  hepatitis  B,  mainly  through  ACLF  and
CLF  forms.  Hepatitis  B-related  ACLF  (HBV-ACLF)  is
characterized  by  acute  decompensation  of  chronic  liver
disease,  resulting  in  multiple  organ  failure  and  high
short-term  mortality [2].  In  traditional  Chinese  medicine
(TCM), this disease is classified into Yang jaundice, Yang-
Yin jaundice,  and Yin jaundice.  In current clinical  study,
it was found that Yang-Yin jaundice, which has character-
istics of both Yang and Yin jaundice, is considered an in-
termediate form as Yang jaundice develops into Yin jaun-
dice. And, treatment efficiency was improved to approxi-
mately  76.2%,  and  mortality  was  decreased  by  10.0%
when  patients  were  treated  with  TCM  and  western
medicine  compared  with  those  treated  by  western  med-
icine alone [3].

In TCM, multi-dimensional information, such as self-
reported symptoms, physical signs, and tongue and pulse
data, is needed for effective diagnosis and syndrome dif-
ferentiation.  Machine  learning,  a  method  used  to  con-
struct  classification  models  of  complex  data,  has  been
widely  used  in  TCM  clinics  for  syndrome  differenti
ation [4-6].  Classification  models  commonly  used  in  TCM
include  logistic  regression  (LR) [7],  support  vector
machine  (SVM) [8],  decision  tree  (DT) [9],  random  forest
(RF) [10, 11],  and  extreme  gradient  boosting  (XGBoost) [12].
These  machine  learning  methods  are  conducive  to  im-
proving  the  accuracy  and  efficiency  of  TCM  diagnosis,
providing new insights into the field of TCM.

There  are  currently  two  problems  with  the  applica-
tion of machine learning in TCM diagnosis. On one hand,
the clinical  data  of  HBV-ACLF in  TCM are  characterized
by small and unbalanced sample sizes. Machine learning
models  tend  to  predict  the  majority  class  when  the  data
are imbalanced, which makes the prediction results poor.
On the other hand, in high-risk medical decision-making
fields,  only  models  with  high  classification  accuracy  and
clinical interpretability can meet the needs of TCM [13]. To
address the problem of class imbalance, the current solu-
tions  mainly  include  data  sampling [14-19],  feature  selecti-
on [20-23], and optimization algorithms [24-32]. Oversampling,
as  a  technique,  resamples  the  minority  class  proportion
to follow the majority class proportion and increases the

amount  of  data.  Therefore,  data  oversampling  was  used
to alleviate the unbalanced small-sample problem in this
study.  For  the  problem  of  interpretability,  some  self-ex-
planatory models, such as linear regression and decision
trees,  used  in  TCM,  are  readily  interpretable.  However,
these  models  designed  to  improve  accuracy  tend  to  be
complex, which limits their interpretability. A balance be-
tween model interpretability and accuracy is required [33].
To  address  this  problem,  Shapley  Additive  exPlanations
(SHAP)  provides  a  solution  by  calculating  the  Shapley
value to determine the contribution of each feature to the
predicted output [34] . However, this method only explains
the model in a black-box way, but cannot explain the in-
ternal  structure  of  the  model.  In  terms  of  data  sampling
combined  with  interpretability,  considering  that  each
sampling  method  produces  different  datasets,  resulting
in  different  models  and  classification  rule  sets,  identify-
ing  these  rule  sets  may  be  challenging  for  TCM  experts.
However, there are few studies on this issue.

To  solve  the  above  problems  and  build  a  high-preci-
sion  TCM  syndrome  differentiation  model,  we  proposed
multiple-round  stable  rule  extraction  (MRSRE),  which  is
an interpretability method based on the internal  rules of
the ensemble tree models. This method uses the charac-
teristics of the decision tree structure to extract classifica-
tion rules. These rules reflect the internal structure of the
model and help understand which features affect the pre-
dicted  output.  Regarding  the  impact  of  sampling  meth-
ods on classification rule sets,  we assume that  if  the rule
set  obtained  by  the  interpretability  method  converges,  it
is  considered  stable.  To  obtain  stable  rule  sets,  we  ap-
plied the MRSRE method to obtain stable high-frequency
feature sets.  The advantage of  our  method is  that  the al-
gorithm  is  relatively  simple  and  can  obtain  a  stable  rule
set  after  multiple  rounds  of  oversampling,  which  has
been verified using the HBV-ACLF dataset.

This  study  aims  to  design  a  clinically  highly  accurate
and  interpretable  TCM  diagnosis  model  based  on  the
theory  of  TCM  syndrome  differentiation  and  treatment,
which can provide the same diagnostic process and out-
comes like TCM experts. 

2 Materials and methods
 

2.1 Data source and standardization
 

2.1.1 Data availability　(i)  Data sources.  This retrospec-
tive  study  obtained  data  from  261  patients  with  HBV-
ACLF who were hospitalized between January 1, 2007 and
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December 31, 2015, at the Hepatology Department of The
First  Hospital  of  Hunan  University  of  Chinese  Medicine.
A systematic research and development project was sup-
ported by the “Key Special Project for the Modernization
of  Traditional  Chinese  Medicine” in  the  13th  Five-Year
Plan  of  the  Ministry  of  Science  and  Technology  (ethical
approval number: 2018-626-55-01, approved by the Insti-
tutional Review Board of  Shuguang Hospital  Affiliated to
Shanghai University of Traditional Chinese Medicine). All
subjects filled in medical record data after informed con-
sent.

Patients  who  met  the  diagnostic  criteria  for  HBV-
ACLF (subacute) were included. Inclusion and exclusion
criteria  are  based  on  guideline for clinical  diagnosis  and
treatment of liver failure [1].

(ii)  TCM  diagnostic  criteria.  The  data  contained  214,
41,  and  6  cases  of  Yang,  Yang-Yin,  and  Yin  jaundice,  re-
spectively.  The  TCM  syndrome  differentiation  standards
for Yang, Yang-Yin, and Yin jaundice refer to the relevant
syndrome  differentiation  standards  in  the Internal  Me-
dicine  of  Traditional  Chinese  Medicine [35],  Traditional
Chinese  Medicine  Diagnostics [36],  Clinic  Terminology  of
Traditional Chinese Medical Diagnosis and Treatment —
Part  2:  Syndromes/Patterns [37],  and  the  Diagnosis  and
Treatment Plan for the Advantageous Diseases of the De-
partment  of  TCM  Hepatology  of  The  First  Hospital  of
Hunan  University  of  Chinese  Medicine.  Detailed  syn-
drome  differentiation  requirements:  a  patient  with  three
main  symptoms,  or  two  main  symptoms  and  two  sec-
ondary  symptoms,  can  be  classified  as  having  a  certain
syndrome. The main and secondary symptoms and signs
of  Yang  jaundice,  Yang-Yin  jaundice,  and  Yin  jaundice
are as follows.

(a)  Yang  jaundice.  The  main  symptoms  and  signs  of
Yang jaundice are yellow and bright skin and eyes, red or
crimson  tongue  with  ecchymosis  and  petechiae,  yellow
and greasy tongue coating, and strong and slippery pulse.
The  secondary  symptoms  and  signs  include  dry  mouth,
bitter taste in the mouth, or nausea and vomiting, consti-
pation, nose and teeth bleeding or skin ecchymosis,  lack
of urine, and yellowish-red urine.

(b) Yang-Yin jaundice. The main symptoms and signs
of Yang-Yin jaundice are: yellow skin and eyes with bright
or dark yellow, light red or slightly red tongue with ecchy-
mosis  and  petechiae  or  teeth-printed,  white  and  greasy
tongue coating,  thick  greasy  or  light  yellow coating,  wiry
or  slippery  pulse,  or  deep  pulse.  The  secondary  symp-
toms and signs are abdominal distension, loose stools, or
nausea and vomiting, dry mouth or lack of desire to drink
or  not  drinking  much,  lack  of  strength,  and  loss  of  ap-
petite.

(c) Yin jaundice. The main symptoms and signs of Yin
jaundice  are  dark  yellow  or  smoky  skin,  pale  tongue,
and  white  and  greasy  tongue  coating.  The  secondary
symptoms and signs include epigastric tightness, abdom-
inal  distension,  or  lack  of  appetite,  fatigue  and  fear  of

cold,  tasteless  mouth  and  lack  of  thirst,  and  deep  or
thready pulse.

(iii) Excluding Yin jaundice samples. Due to the limit-
ed amount of available data on Yin jaundice, using these
data  to  build  a  machine  learning  model  would  result  in
overfitting.  For  example,  the  sample  size  of  Yin  jaundice
and Yang jaundice is 220, of which there are 214 cases of
Yang  jaundice  and  only  6  cases  of  Yin  jaundice.  Even  if
the model misclassifies all 6 cases of Yin jaundice as Yang
jaundice, the overall accuracy rate of classification would
still be 97.27%. However, this accuracy rate fails to reflect
the  classifier’s  performance  for  the  minority  class.  In-
creasing  the  sample  size  of  Yin  jaundice  through  over-
sampling  would  still  lead  to  overfitting.  In  other  words,
oversampling  the  minority  class  cannot  modify  the  fea-
tures  to  accurately  represent  the  real  clinical  world,
thereby limiting the model's generalization ability. This is
because the generation of new data in oversampling algo-
rithms  is  based  on  the  original  data.  These  algorithms
generally copy the original data or generate new samples
based on the distribution of the original data. If the num-
ber of samples in the minority class is too small, the mod-
el  may  overfit  by  paying  too  much  attention  to  the  sam-
ples in the majority class and ignoring those in the minor-
ity  class.  The  oversampling  method,  on  the  other  hand,
increases  the  number  of  samples  in  the  minority  class,
which can lead to overfitting as the model becomes over-
ly  adapted  to  the  characteristics  of  the  minority  class.
Thus,  we  excluded  6  cases  of  Yin  jaundice,  leaving  255
cases. From these cases, 149 self-reported symptoms and
124 features of tongue and pulse data were manually ex-
tracted  by  the  medical  students  from  medical  records.
The  dataset  is  characterized  by  high  dimensionality,  a
small sample size, and imbalanced data categories.

(iv) Sample analysis.  The age of the 255 patients with
HBV-ACLF  ranged  from  14  to  75  years  (mean  39.57  ±
10.96 years), and there were more men than women (233
vs.  22).  However,  the  cases  included  in  this  study  came
from  the  hospitalization  data  of  the  Hepatology  Depart-
ment  of  The  First  Hospital  of  Hunan  University  of  Chi-
nese  Medicine  spanning  eight  years,  and  the  data  were
not screened based on gender. Therefore, these data may
indicate that more men than women suffer from the dis-
ease. Table 1 shows that there were more young and mid-
dle-aged patients than older patients. We performed sta-
tistical  analysis  using  logistic  regression  and  observed
that  the P value  between  gender  and  predicted  results
was  0.86,  without  statistically  significant  differences  (P >
0.05).  This  means  that  gender  has  no  significant  impact
on  the  prediction  results  under  the  current  sample  size
and the statistical methods used.

Given that Yang-Yin jaundice is an intermediate TCM
syndrome between Yang and Yin jaundice, we used For-
mulas (1) and (2) to calculate the frequency difference of
each  symptom  or  sign  under  different  syndrome  types.

ZHOU Zhan, et al. / Digital Chinese Medicine 7 (2024) 137-147 An interpretability intelligent aided diagnosis model for HBV-ACLF    139



The feature difference score of the two syndromes is less
than 0.1,  and the main differences are in the tongue and
pulse conditions (Figure 1).

Frequency of symptom or sign =
Number of a symptom or sign
Number of a syndrome or sign

(1)

Difference of symptom or sign =
Frequncy of symptom or sign of A

Total frequency of symptoms and signs
−

Frequency of symptom or sign of B
Total frequency of symptoms and signs

(2)
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Figure  1   Comparison  of  the  top  20  symptoms  with
tongue, pulse, and symptom frequency differences
  

2.1.2 Data standardization　We did not use dimensional-
ity  reduction  methods  commonly  used  in  machine
learning  because  we  could  achieve  high  accuracy  and
precision  simply  by  removing  some  missing  values  and
merging linguistically ambiguous data through data stan-
dardization, while preserving all available features.

(i) Standardization references. The main standardiza-
tion references were the Internal Medicine of Traditional
Chinese Medicine [35], Traditional Chinese Medicine Diag-
nostics [36],  Clinic  Terminology  of  Traditional  Chinese
Medical  Diagnosis  and  Treatment —Part  2:  Syndromes/
Patterns [37],  Guidelines  for  Clinical  Diagnosis  and  Treat-
ment  of  Acute-on-Chronic  Liver  Failure  in  Traditional
Chinese  Medicine [38],  and  Guideline  for  Diagnosis  and
Treatment of Liver Failure [1].

(ii)  Standardization  implementation  process  and  re-
sults. We standardized the dataset according to the stan-
dardized references, including processing missing values,
compound phrases, and polysemy. The details are as fol-
lows.

(a)  Missing  values.  Missing  values  refer  to  the  ab-
sence  of  a  particular  attribute  or  feature  for  a  given  data
point.  Missing  values  can  cause  bias  or  instability  in  the
model learning process. If  the percentage of missing val-
ues for a feature is very high (e.g., greater than 0.90), then
the feature is unlikely to provide useful information to the
model.  At  the  same  time,  if  a  sample  has  many  missing
features, retaining the sample may introduce bias. In this
study,  features  with  a  missing  value  percentage  of  more
than 0.90 and samples with a missing value percentage of
more than 0.50 were removed.

(b)  Compound  phrases.  A  feature  with  compound
phrases  is  a  combination of  multiple  symptoms,  such as
“yellowing  of  the  skin  and  eyes,  yellow  urine,  and
fatigue”, which violates the Feature Independence Princi-
ple. Thus, we separated such features from the rest (Sup-
plementary Table S1).

(c)  Polysemy. Polysemy  in  TCM  clinics  means  that  a
symptom  may  have  different  expression  terms.  We  nor-
malized multiple words with the same meaning and com-
bined  different  expressions  of  the  same  symptom  into
one term (Supplementary Table S2).

The initial 149 entries were normalized into 57 symp-
toms [39] (Supplementary  Table  S3).  Then,  tongue  signs
were categorized into tongue, tongue body, tongue coat-
ing,  and  sublingual  vessels,  while  pulse  signs  were  cate-
gorized  into  pulse  conditions,  including  eight  indepen-
dent  pulse signs.  Finally,  a  total  of  124 tongue and pulse
signs were standardized into 33 features (Supplementary
Table S4). 

2.2 Characteristics of the methods

Self-reported  symptoms  and  tongue  and  pulse  signs  in
the TCM records were used as feature inputs, while diag-
nostic  syndromes  were  used  as  output  labels.  The  syn-
drome differentiation problem was converted into a clas-
sification problem. 

2.2.1 Data  oversampling　 Four  oversampling  methods
were selected:  random oversampling,  Synthetic  Minority
Over-sampling Technique (SMOTE),  borderline-SMOTE,
and  SMOTE-D.  As  the  samples  generated  by  each
method  can  be  different,  we  applied  each  oversampling
method six times, and the resulting datasets were used as
the  model  inputs.  The  oversampling  steps  were  as  fol-
lows: (i) the entire dataset, designated as P, which includ-
ed n samples  after  preprocessing,  was  utilized.  This
dataset encompassed both the feature sets and the asso-
ciated  classification  labels;  (ii)  a  sampling  ratio  of  1  :  1
was  used to  make the number  of  minority  class  samples

 

Table 1   Age distribution of patients in the study

Age (year) Number of patients

10 – 19 2

20 – 29 48

30 – 39 84

40 – 49 76

50 – 59 33

60 – 69 10

70 – 79 2
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the  same  as  the  majority  class  samples;  (iii)  four  sam-
pling  techniques  were  used  to  oversample  the  minority
class  data  in  the  dataset  six  times,  and  24  datasets  were
obtained;  (iv)  the  24  datasets  had  the  same  sample  size
and comprised features and classification labels. 

2.2.2 Syndrome  differentiation  model  construction　We
used common classifiers (LR, SVM, and DT) and ensem-
ble  learning  classifiers  (RF  and  XGBoost).  To  improve
classifier performance, we chose Optuna (https://github.
com/optuna/optuna) for the hyperparameter selection of
machine learning classifiers.  To strengthen the effective-
ness of small-sample training, we adopted ten-fold cross-
validation to divide the oversampled medical record sam-
ples. The details are shown in Algorithm 1.
Algorithm  1:  syndrome  differentiation  model  construc-
tion
Input: training data set after oversampling
{S 1,S 2,S 3,S 4} S i = {S ′1,S ′2,S ′3,S ′4,S ′5,S ′6}

S ′j = {( p′1,y
′
1), (p′2,y

′
2), ..., (p′n,y

′
n )}

S = , ,

1 The oversampled dataset corresponding to the selected
five classifiers was iteratively tuned using Optuna for 1 000
rounds to obtain optimal parameters.
2 Begin
3 s = number of training sets after oversampling
4 l = len(S)
5 for i = 1 to l{
6 　for j = 1 to s{
7 　　Set training samples.
8  　 　 Set  the  optimal  parameters  of  the  model  corre-
sponding to the training sample.
9  　　 Each  dataset  was  divided  into  sample  sets  using
ten-fold cross-validation.
10 　　Train classifier and obtain 10 results of accuracy,
precision, F1 score, and AUC.
11 　}
12 　Take the mean and variance of the results to obtain
each model evaluation metrics.
13 }
14 End
Output:  mean  and  variance  of  accuracy,  precision,  F1
score, and AUC, respectively. 

2.2.3 Multiple round stable rule extraction　Rule extrac-
tion  after  oversampling  should  account  for  two  issues:
one is the stability of the rule set, and the other is how the
representation  can  meet  the  domain  requirements.  As
the  samples  obtained  by  multiple  SMOTE  oversampling
of the same dataset are different, the decision paths of the
ensemble decision tree model are naturally different. Ow-
ing  to  the  randomness  of  the  ensemble  decision  tree
model,  even  if  the  models  are  built  multiple  times  using
the same sample, their classification rule sets will still  be
different.  Therefore,  we  need  to  ensure  that  the  rule  set
does not change with oversampling by obtaining a stable
rule  set.  The  purpose  of  the  model  interpretability

analysis is to make the model understandable to humans
and  to  adapt  to  the  needs  of  the  domain.  In  clinical
medicine,  it  is  often  challenging  to  distinguish  between
Yang  jaundice  and  Yang-Yin  jaundice.  Therefore,  the
purpose of the interpretability of the TCM syndrome dif-
ferentiation model is to obtain the basis for the model to
classify  diseases  according  to  characteristics  (symptoms
and  signs),  and  this  basis  should  be  consistent  with  the
views of TCM experts to a certain extent.

Therefore,  the interpretation results should meet this
clinical need of TCM. To address the above problems, we
designed the MRSRE architecture with two parts: ensem-
ble  tree  rule  extraction  and  high-frequency  overlapping
feature extraction.

(i)  Ensemble  tree  rule  extraction.  The  ensemble  tree
model  has  natural  interpretability  because  it  integrates
decision trees,  where each path from the root  to  the leaf
nodes represents a decision path. Each decision path rep-
resents  a  disease  diagnosis  process,  which  means  start-
ing from the root node of the decision tree, making deci-
sions based on the conditions at each node (for example,
whether the patient has specific symptoms or signs), and
gradually  traversing  the  tree  structure  downwards  until
reaching  a  leaf  node  (i.e.,  the  end  of  the  decision  tree).
This  process  simulates  the  thinking  process  of  a  doctor
when  diagnosing  a  disease,  that  is,  possible  diseases  are
gradually eliminated or confirmed based on the patient's
symptoms and signs,  and a diagnosis result  is  finally ob-
tained. To understand the decision-making process of the
model,  we  need  to  obtain  the  decision  path  set,  also
known as the classification rule set. In the context of dis-
ease  diagnosis,  a  decision  tree  model  denotes  multiple
possible  disease  diagnosis  processes.  By  traversing  each
subtree,  we  can  extract  the  entire  subtree  classification
rule set. These rules are employed to reveal the decisions
of  the  ensemble  tree.  However,  this  rule  extraction
method may yield an excessive number of  rules,  making
it  difficult  to  comprehend  the  model  effectively.  To  ob-
tain a concise rule set, we filtered the rules based on their
frequency, length, and error.

The rule  extraction steps  of  the ensemble tree  model
were  as  follows:  (a)  the  clinical  syndrome differentiation
model was trained, and optimized parameters were used
in  the  models  to  maintain  high  classification  perfor-
mance; (b) all decision paths were extracted from the root
to  the  leaf  nodes  of  all  decision trees;  (c)  duplicate  rules
were  removed  to  obtain  the  decision  rule  set  of  the  en-
semble decision tree; and (d) length, error,  and frequen-
cy were adopted to measure the statistical characteristics
of the rules [40]. The rules with length, error, and frequen-
cy  under  certain  thresholds  were  selected  as  the  final
extraction  rules.  Rule  length  represents  the  number  of
features  or  the  complexity  of  the  rule.  Error  reflects  the
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correctness of the rule, and frequency indicates the sam-
ple  size  that  satisfies  the  rule.  The  error  and  frequency
were calculated using the following Formulas (3) and (4).

Error =
A rule determines the number of wrong samples

The number of samples that match the rule
(3)

Frequency =
The number of samples that match the rule

All sample sizes
(4)

(ii) High-frequency overlapping feature extraction. To
ensure the stability of rule sets after oversampling, we ob-
tained  multiple  ensemble  decision  tree  models  and  rule
sets by repeating oversampling and training models mul-
tiple times. We assume that we conduct n experiments to
obtain  the  rule  set,  and  the  rule  set  obtained  at  the rth
time  (r < n)  remains  basically  unchanged,  which  we  call
rule  set  convergence.  They  are  considered  to  have  good
stability  if  the  rule  set  converges,  resulting  in  fixed  over-
lapping  features  in  the  model  built  after  multiple  over-
sampling;  otherwise,  the  stability  is  poor.  Distinguishing
between  the  two  types  of  diseases  requires  understand-
ing  of  their  similarities  and  differences.  To  meet  this  re-
quirement, we can know what their main symptoms and
signs  are  independent  by  finding  the  high-frequency
overlapping  features  of  the  two  syndrome  types.  More-
over, we can know which features can distinguish the two
diseases by taking the different sets of their high-frequen-
cy overlapping features to obtain distinguishing features.
The  detailed  steps  of  repeated  feature  extraction  are
shown in Algorithm 2.
Algorithm  2:  high-frequency  overlapping  feature  extrac-
tion
Input:  the repetition number of  m rounds of  rule extrac-
tion, the number k represents the first k rules.
1 Begin

S =2  []
3 for i = 1 to m{
4  　 classification  rules  =  classification  rules  were  ex-
tracted  from  every  ensemble  decision  tree  train  of  the

oversampled  data  according  to  the  ensemble  decision
tree extraction step.

S i　 = classification rules
S S i5 　  = S.append( )

6 }
S ′ =7 　  []

8 for i = 1 to m{
S ′i

S i

9 　　  = merged duplicate rules and frequency of rules
in .

S ′i10 　　frequency = the frequency of duplicate rules in 
S ′i

k×m

11 　　  = rules were sorted in descending order by fre-
quency,  and the top k rules were filtered to get  a  total  of

 rule sets
S ′ S ′i12 　　 .append( )

13 　}

S ′i

14 overlapping_features = the overlapping feature set was
obtained  by  finding  the  intersection  of  the  features  ex-
tracted from the rules in 

S ′i

15 difference_features = the difference set of the overlap-
ping features was set under different category labels in 
16 End
Output: overlapping_features, difference_features 

3 Results
 

3.1 Classification results
 

3.1.1 Raw data classification results　We used LR, SVM,
RF, DT, and XGBoost to build disease classification mod-
els  on  the  unsampled  dataset.  Accuracy,  precision,  F1
score,  and  AUC  were  adopted  as  evaluation  metrics
(Table 2).  Based on the original  data,  these models  were
used  to  build  classification  models.  The  classification
performance  for  the  minority  class  samples,  specifically
Yang-Yin jaundice, was significantly compromised by the
class-imbalance issue. Across all machine learning mod-
els  evaluated,  the  F1  scores  were  disappointingly  low,
with none exceeding 0.33 (Table 2). 

3.1.2 Classification results after oversampling　Since the
dataset  featured  class  imbalance,  we  oversampled  the

 

Table 2   Classification results of syndrome differentiation models based on raw data [mean ± standard deviation (SD)]

Model Jaundice type Precision F1 score AUC Accuracy

LR
Yang 0.84 ± 0.01 0.91 ± 0.01

0.68 ± 0.00 0.84 ± 0.01
Yang-Yin 0.00 ± 0.00 0.00 ± 0.00

SVM
Yang 0.84 ± 0.01 0.91 ± 0.01

0.68 ± 0.00 0.84 ± 0.01
Yang-Yin 0.00 ± 0.00 0.00 ± 0.00

RF
Yang 0.86 ± 0.03 0.91 ± 0.03

0.77 ± 0.01 0.83 ± 0.04
Yang-Yin 0.38 ± 0.43 0.25 ± 0.28

DT
Yang 0.87 ± 0.04 0.88 ± 0.03

0.68 ± 0.04 0.80 ± 0.09
Yang-Yin 0.33 ± 0.30 0.31 ± 0.25

XGBoost
Yang 0.88 ± 0.04 0.89 ± 0.03

0.72 ± 0.00 0.80 ± 0.04
Yang-Yin 0.36 ± 0.28 0.32 ± 0.22
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dataset  before  training  the  classifiers  and  then  used  five
classifiers to classify the dataset to improve model perfor-
mance. The final experimental results are summarized in
Table 3.  We applied four oversampling methods to over-
sample the data for six rounds as the dataset to build the
classification  models.  Additionally,  we  used  Optuna  and
10-fold  cross-validation  to  potentiate  the  classification
performance,  resulting  in  precision  above  90%  for  each
model (Table 3). 

3.2 MRSRE results

The RF + SMOTE model gave the best results, so we used
the  MRSRE  method  to  perform  interpretability  analysis
on  this  model.  To  obtain  compact  and  non-redundant
classification rules, the filtering conditions for the classifi-
cation  rules  were  set  as  a  rule  length ≤ 10,  frequency  >
0.03, and error < 0.05. Four rounds of rule extraction were
conducted  in  this  experiment  to  obtain  stable  features,

 

Table 3   Classification results of syndrome differentiation models based on oversampled data (mean ± SD)

Model Jaundice type Precision F1 score AUC Accuracy

LR + RO
Yang 0.92 ± 0.05 0.87 ± 0.05

0.87 ± 0.00 0.86 ± 0.05
Yang-Yin 0.85 ± 0.06 0.88 ± 0.04

LR + SMOTE
Yang 0.94 ± 0.06 0.85 ± 0.06

0.86 ± 0.00 0.87 ± 0.05
Yang-Yin 0.82 ± 0.06 0.88 ± 0.05

LR + Borderline-SMOTE
Yang 0.91 ± 0.06 0.86 ± 0.05

0.89 ± 0.00 0.86±0.05
Yang-Yin 0.84 ± 0.06 0.88 ± 0.05

LR + SMOTE-D
Yang 0.92 ± 0.06 0.87 ± 0.05

0.92 ± 0.00 0.88 ± 0.04
Yang-Yin 0.85 ± 0.06 0.89 ± 0.05

SVM + RO
Yang 0.96 ± 0.05 0.91 ± 0.04

0.92 ± 0.00 0.94 ± 0.04
Yang-Yin 0.88 ± 0.04 0.92 ± 0.04

SVM + SMOTE
Yang 1.00±0.02 0.93 ± 0.05

0.96 ± 0.00 0.94 ± 0.04
Yang-Yin 0.90 ± 0.06 0.94 ± 0.03

SVM + Borderline-SMOTE
Yang 0.96 ± 0.05 0.91 ± 0.04

0.96 ± 0.00 0.93 ± 0.04
Yang-Yin 0.88 ± 0.06 0.92 ± 0.04

SVM + SMOTE-D
Yang 0.96 ± 0.04 0.91 ± 0.04

0.95 ± 0.00 0.91 ± 0.04
Yang-Yin 0.88 ± 0.05 0.92 ± 0.03

RF + RO
Yang 0.95 ± 0.05 0.92 ± 0.01

0.99 ± 0.01 0.92 ± 0.04
Yang-Yin 0.91 ± 0.06 0.93 ± 0.01

RF + SMOTE
Yang 0.98 ± 0.04 0.93 ± 0.05

0.98 ± 0.01 0.92 ± 0.04
Yang-Yin 0.91 ± 0.06 0.94 ± 0.04

RF + Borderline-SMOTE
Yang 0.94 ± 0.05 0.91 ± 0.04

0.97 ± 0.00 0.92 ± 0.04
Yang-Yin 0.90 ± 0.05 0.92 ± 0.04

RF + SMOTE-D
Yang 0.93 ± 0.05 0.91 ± 0.04

0.97 ± 0.00 0.91 ± 0.04
Yang-Yin 0.90 ± 0.05 0.92 ± 0.03

DT + RO
Yang 0.94 ± 0.05 0.90 ± 0.05

0.92 ± 0.01 0.92 ± 0.04
Yang-Yin 0.87 ± 0.06 0.91 ± 0.04

DT + SMOTE
Yang 0.99 ± 0.02 0.92 ± 0.04

0.92 ± 0.02 0.92 ± 0.04
Yang-Yin 0.88 ± 0.06 0.93 ± 0.03

DT + Borderline-SMOTE
Yang 0.93 ± 0.05 0.90 ± 0.05

0.93 ± 0.01 0.91 ± 0.04
Yang-Yin 0.87 ± 0.05 0.90 ± 0.04

DT + SMOTE-D
Yang 0.93 ± 0.05 0.88 ± 0.04

0.91 ± 0.01 0.89 ± 0.05
Yang-Yin 0.86 ± 0.05 0.90 ± 0.03

XGboost + RO
Yang 0.94 ± 0.05 0.89 ± 0.05

0.99 ± 0.00 0.92 ± 0.04
Yang-Yin 0.87 ± 0.06 0.90 ± 0.04

XGboost + SMOTE
Yang 0.98 ± 0.03 0.91 ± 0.05

0.93 ± 0.00 0.91 ± 0.05
Yang-Yin 0.88 ± 0.07 0.92 ± 0.04

XGboost + Borderline-SMOTE
Yang 0.93 ± 0.06 0.89 ± 0.05

0.92 ± 0.00 0.91 ± 0.04
Yang-Yin 0.87 ± 0.06 0.90 ± 0.04

XGboost + SMOTE-D
Yang 0.93 ± 0.05 0.89 ± 0.06

0.93 ± 0.00 0.90 ± 0.04
Yang-Yin 0.87 ± 0.08 0.90 ± 0.05
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with  models  constructed  200,  400,  600,  and  800  times  in
each  round.  The  final  overlapping  feature  sets  of  Yang
and Yang-Yin jaundice syndromes obtained from the rule
sets extracted in each round are presented in Table 4 and
5,  respectively.  The  overlapping  feature  sets  remained
unchanged  after  the  number  of  models  constructed
reached 400.
 

3.3 The top 20 features from the RF classification model

The  important  features  were  determined  by  ranking  the
contributions of all model features to the classification re-
sults. We selected the top 20 features that contributed the
most  to  the  classification  results  from  a  total  of  90  fea-
tures,  including  57  symptoms  and  33  tongue  and  pulse
conditions. The results reveal that 13 out of the 20 impor-
tant features extracted from the RF + SMOTE model were
related to tongue and pulse signs,  while  the remaining 7
were symptoms (Figure 2). These results highlight the sig-
nificance  of  inter-syndrome  differences  in  tongue  and
pulse signs.
  

150

125
127

6055 50
343332 31

Feature name

Im
p
o
rt

an
t 

sc
o
re

 

31313130 2725 2524 23222222

100

75

50

25

0

T
o
n
g
u
e 

b
o
d
y
_
re

d
T

o
n
g
u
e 

b
o
d
y
_
p
al

e_
w

h
it

e
P

u
ls

e 
co

n
d
it

io
n
_
w

ir
y

T
o
n
g
u
e 

b
o
d
y
_
d
ar

k
T

o
n
g
u
e 

b
o
d
y
_
re

d
_
cr

im
so

n
T

o
n
g
u
e 

co
at

in
g
 t

h
in

T
o
n
g
u
e 

b
o
d
y
_
li

g
h
t_

re
d

A
b
d
o
m

in
al

 d
is

te
n
si

o
n

S
u
b
li

n
g
u
al

 v
es

se
l 

h
ea

lt
h
y

Y
el

lo
w

in
g
 o

f 
th

e 
b
o
d
y
 a

n
d
 e

y
es

Y
el

lo
w

 u
ri

n
e

L
ac

k
 o

f 
st

re
n
g
th

O
il

 l
o
at

h
in

g
P

u
ls

e 
co

n
d
it

io
n
 s

li
p
p
er

y
N

au
se

a
L

o
ss

 o
f 

ap
et

it
e

T
o
n
g
u
e 

co
at

in
g
 y

el
lo

w
S

u
b
li

n
g
u
al

 v
es

se
l 

to
rt

u
o
u
s

S
u
b
li

n
g
u
al

 v
es

se
l 

th
ic

k
en

F
o
rm

 o
f 

to
n
g
u

e 
h
ea

lt
h
y

 
Figure  2   The  top  20  most  important  features  of  the  RF
model
  

4 Discussion
 

4.1 Sample and important features of the RF model

Based on the classification results in Table 3,  the predic-
tion  results  of  each  model  after  applying  SMOTE  over-
sampling are not markedly different. The classification F1
scores of the RF + SMOTE model in the majority class and
minority  class  are  0.94  and  0.93,  respectively,  and  the
AUC is 0.98. Comparing results with other models, it can
be seen that the RF + SMOTE model has the best perfor-
mance.  To  assess  interpretability,  we  finally  chose  the
RF  +  SMOTE  model,  even  though  the  SVM  +  SMOTE
model is comparable to the RF + SMOTE model. This de-
cision  was  made  based  on  two  considerations.  First,  the
RF + SMOTE model demonstrated superior classification
performance in the minority class over the SVM + SMOTE
model. Second, random forests offer advantages over lin-
ear models in many aspects, such as prediction and inter-
pretability [41].

Sample  analysis  based  on  original  data  revealed  that
the  differences  in  signs  and  symptoms  between  the  two
syndromes  was  not  significant,  with  the  main  distinc-
tions  observed  in  the  tongue  and  pulse  (Figure  1).  The
most important classification features in the model were
also reflected in the tongue and pulse (Figure 2), indicat-
ing  that  oversampling  did  not  change  the  classification

 

Table 4   RF classification of overlapping features of Yang
jaundice

Feature
Time

Frequency
200 400 600 800

Pulse (wiry) √ √ √ √ 33

Yellowing of urine √ √ √ √ 26

Yellowing of the skin and eyes √ √ √ √ 15

Tongue body (red) √ √ √ √ 13

Form of tongue (healthy) √ √ √ √ 13

Sublingual vessel (healthy) √ √ √ √ 7

Nausea √ / √ √ 6

Oil loathing √ √ / √ 4

Sublingual vessel (thickening) √ / / / 1

Frequency represents the number of times that the features

from the first 10 rule sets in each round of iterations appear in

the 10 rule sets after 200, 400, 600, and 800 iterations, following

filtering, and frequency sorting. “√” represents the presence of

the feature in the iteration. “/” represents the absence of the

feature in the iteration.

 

Table 5   RF classification of overlapping features of Yang-
Yin jaundice

Feature
Time

Frequency
200 400 600 800

Form of tongue (healthy) √ √ √ / 15

Pulse (wiry) √ √ √ √ 11

Tongue body (dark) √ √ √ √ 10

Yellowing of skin and eyes √ √ √ √ 9

Sublingual vessel (healthy) √ √ √ √ 9

Tongue body (pale white) √ √ √ √ 9

Yellowing of urine / √ √ √ 8

Tongue coating (white) / √ √ √ 7

Lack of strength / √ √ √ 6

Pulse condition (slippery) / √ √ √ 5

Tongue body (light red) / √ √ √ 5

Tongue coating (slimy) / √ / √ 4

Abdominal distension / √ √ √ 4

Oil loathing / √ √ √ 3

Nausea √ √ / / 2

“√” represents the presence of the feature in the iteration. “/”

represents the absence of the feature in the iteration.
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features of  the data,  suggesting that  the model’s  features
extracted  from  the  classification  rules  can  be  used  for
clinical  interpretability  analysis.  Furthermore,  this  indi-
cated that the features after oversampling were stable and
robust.  Multiple  rule  extractions  were  performed  on  the
RF model using MRSRE to obtain stable overlapping fea-
ture sets (Table 4 and 5), and it was found that most of the
classified  differential  feature  sets  were  still  tongue  and
pulse.  This  highlights  the  significance  of  tongue  and
pulse features  in  the classification of  Yang and Yang-Yin
jaundice syndromes, which is consistent with clinical ob-
servations in chronic severe hepatitis B. 

4.2 Clinical interpretability of the model

Chronic severe hepatitis B often has two syndromes, Yang
jaundice and Yin jaundice, both of which have symptoms
including  yellowing  of  the  skin  and  eyes  and  gastroin-
testinal discomfort. Chronic severe hepatitis often occurs
on the basis of  liver cirrhosis.  Its  pathogenesis is  charac-
terized  by  the  necrosis  of  large  areas  of  liver  tissue  cen-
tered  on  pseudolobules,  which  manifests  as  high  jaun-
dice  and  lasts  for  a  long  time.  TCM  believes  that  the
pathogenesis  of  this  disease  has  obvious  particularities,
which is mainly manifested in that there are many factors
that  cause  jaundice  to  turn  into  Yin  jaundice,  and  the
proportion of non-Yang jaundice is high. The researchers
analyzed  the  pathogenesis  and  characteristics  of  differ-
ent types of jaundice. The key to distinguishing them lies
in  whether  the  jaundice  color  is  bright  or  dark  and
whether the color of the tongue body is red or pale [42].  A
study found another category of patients with spleen defi-
ciency,  characterized  by  pale,  fat,  or  dentate  tongue  and
loose  stools [43].  Despite  damp-heat  or  stagnant-heat
manifestations,  such  as  greasy  or  yellow  tongue  coating,
or  dry  and  bitter  mouth  and  slightly  red  tongue,  treat-
ment  is  ineffective  simply  by  identifying  the  dampness-
heat and stagnant-heat patterns of Yang jaundice. There-
fore,  researchers  have  classified  this  syndrome  as  Yang-
Yin  jaundice,  and  medications  that  warm  Yang  and
strengthen  the  spleen  in  HBV-ACLF  Yang-Yin  jaundice
foster jaundice regression [42]. Based on the syndrome dif-
ferentiation  and  treatment  modes  for  Yang  jaundice,
Yang-Yin jaundice, and Yin jaundice, overall clinical effi-
ciency,  efficacy,  and  safety  have  improved [3].  It  can  be
seen that the pathogenesis of Yang-Yin jaundice involves
both  spleen  deficiency  and  dampness-heat.  They  have
the  manifestations  of  Yin  jaundice  syndrome  such  as
jaundice  and  dark  yellow,  pale  or  fat  tongue  or  tooth
stains, and Yang jaundice syndrome such as dry or bitter
mouth  and  light  yellow  tongue.  Yang-Yin  jaundice  is  an
“intermediate  state” between  Yang  jaundice  and  Yin
jaundice.  In  studies  of  patients  with  severe  chronic  hep-
atitis  B,  Yang  deficiency  was  an  important  factor  in  the
transformation from Yang jaundice to Yin jaundice [42, 43].
In their research, it was concluded that there are notable
differences in symptoms and signs between patients with

Yang  jaundice  and  Yang-Yin  jaundice.  Yang  jaundice  is
mainly  characterized  by  yellowing  of  the  skin  and  eyes,
gastrointestinal  discomfort,  bright  jaundice,  dry  mouth
and bitterness, sublingual pulse, greasy or yellow coating,
and red tongue. On one hand, the cause of Yang jaundice
is  attributed  to  dampness-heat.  On  the  other  hand,  the
main  characteristics  of  Yang-Yin  jaundice  are  yellowing
of the skin and eyes, gastrointestinal discomfort, pale, fat,
dentate,  greasy  or  yellow tongue coating,  or  dry  and bit-
ter mouth, tortuous sublingual veins, slightly red tongue,
and  loose  stools.  Yang-Yin  jaundice  is  mostly  caused  by
spleen deficiency and dampness-heat.

According  to  the  results  of Table  4 and 5,  common
features were observed in both syndromes, such as a wiry
pulse, yellowing of the urine, skin and eyes, the shape of a
healthy  tongue,  healthy  sublingual  vessels,  nausea,  and
oil  loathing.  The  main  features  of  the  two  types  of  syn-
dromes  were  obtained  by  calculating  the  difference  in
overlapping  features.  These  distinctive  features  can  be
used  to  differentiate  the  two  syndromes.  The  main  fea-
tures  of  Yang  jaundice  include  a  red  tongue  body  and
thickened  sublingual  vessels,  which  are  indicative  of
dampness-heat.  Additionally,  the feature set  of  Yang-Yin
jaundice  includes  a  dark  or  pale-white  tongue  body,  a
white tongue coating, a lack of strength, a slippery pulse,
a light-red tongue body,  a  slimy tongue coating,  and ab-
dominal  distension.  These features reflect  the character-
istics of spleen deficiency.

Therefore,  the  classification  features  extracted  by
MRSRE  in  this  study  are  consistent  with  the  findings  of
SUN et al. [42, 43], indicating that the classification rules ex-
tracted from the ensemble decision tree model can effec-
tively explain the TCM syndrome differentiation patterns. 

5 Conclusion

Consistent with models from previous TCM clinical stud-
ies, the interpretable TCM syndrome differentiation mod-
el in this study can identify 0.93 of major syndromes and
0.94 of minor syndromes, with the extracted features fully
reflecting  the  similarities  and  differences  between  Yang-
Yin jaundice and Yang jaundice. SMOTE oversampling of
the minority  samples did not  alter  their  clinical  features,
and  the  constructed  RF  syndrome  differentiation  model
is  clinically  interpretable  and  can  be  used  for  syndrome
prediction  in  HBV-ACLF.  This  method  can  also  be  ap-
plied to other small samples of imbalanced TCM clinical
data  for  syndrome  differentiation  analysis.  This  study
provides technical support for further exploration of actu-
al clinical syndrome differentiation in TCM and serves as
a basis for constructing clinically interpretable syndrome
differentiation models. 
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基于小样本不平衡数据构建乙肝相关慢加急性肝衰竭中医辨证分型的
可解释性模型

周展a, 彭清华b*, 肖晓霞a*, 邹北骥a, 刘彬a, 郭水霞c

a. 湖南中医药大学信息科学与工程学院, 湖南 长沙 410208, 中国
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【摘要】目的  乙肝相关慢加急性肝衰竭（HBV-ACLF）临床病历数据普遍存在样本量小、类别不平衡等问

题，而大部分机器学习模型是基于平衡数据设计的，缺乏可解释性。本研究旨在基于中医辨证论治理论，提

出一种临床可解释、准确率高的 HBV-ACLF 中医诊断模型。方法  本研究收集了 261 例 HBV-ACLF 患者的病

例，包括阳黄证（214 例）、阳阴黄证（41 例）和阴黄证（6 例）三种证型。为了避免机器学习模型过拟

合，排除了阴黄病例。经过数据标准化和清洗，获得阳黄证和阳阴黄证相关的 255 份病历。针对类别不平衡

问题，采用过采样方法和五种机器学习方法，包括逻辑回归（LR）、支持向量机（SVM）、决策树

（DT）、随机森林（RF）和极端梯度提升（XGBoost），构建了证型诊断模型。本研究以精度、F1 得分、

受试者工作特征曲线下面积（AUC）和准确率作为模型评价指标。选择分类结果最好的模型提取诊断规则，

并深入分析其临床意义。此外，我们提出了一种新颖的多轮稳定规则提取（MRSRE）方法，以获得可以展

示模型临床可解释性的稳定特征规则集。结果  利用过采样平衡数据构建的五种机器学习模型精度都超过了

0.90，其中 RF 证型分类准确率为 0.92，阳黄及阳阴黄两类别的 F1 均值分别为 0.93 和 0.94，AUC 值为

0.98。基于 MRSRE 方法的 RF 辨证模型提取规则显示，阳黄及阳阴黄的共同特征是脉弦，身目尿黄，舌体

正常，舌下脉络正常，恶心和厌油纳差。 阳黄的主要特点是舌质红、舌下脉络增粗，阳阴黄的主要特点是

舌质暗、淡白、苔白、无力、脉滑、舌质淡红、舌苔腻和腹胀，该结果与中医专家依据中医辨证论治理论相

一致。结论  本研究构建的模型可用于区分 HBV-ACLF 证型，还可用于生成其他临床可解释的模型，这些模

型对样本量小且类别不平衡的临床数据具有较高的准确性。

【关键词】中医；乙肝相关慢加急性肝衰竭；不平衡数据；随机森林；可解释性
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