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ABSTRACT

Background. Worldwide, coronary artery disease (CAD) is a leading cause of mortality and morbidity and remains to 
be a top health priority in many countries. A non-invasive imaging modality for diagnosis of CAD such as single photon 
emission computed tomography-myocardial perfusion imaging (SPECT-MPI) is usually requested by cardiologists 
as it displays radiotracer distribution in the heart reflecting myocardial perfusion. The interpretation of SPECT-MPI 
is done visually by a nuclear medicine physician and is largely dependent on his clinical experience and showing 
significant inter-observer variability.

Objective. The aim of the study is to apply a deep learning approach in the classification of SPECT-MPI for perfusion 
abnormalities using convolutional neural networks (CNN).

Methods. A publicly available anonymized SPECT-MPI from a machine learning repository (https://www.kaggle.com/
selcankaplan/spect-mpi) was used in this study involving 192 patients who underwent stress-test-rest Tc99m MPI. 
An exploratory approach of CNN hyperparameter selection to search for optimum neural network model was utilized 
with particular focus on various dropouts (0.2, 0.5, 0.7), batch sizes (8, 16, 32, 64), and number of dense nodes 
(32, 64, 128, 256). The base CNN model was also compared with the commonly used pre-trained CNNs in medical 
images such as VGG16, InceptionV3, DenseNet121 and ResNet50. All simulations experiments were performed in 
Kaggle using TensorFlow 2.6.0., Keras 2.6.0, and Python language 3.7.10. 

Results. The best performing base CNN model with parameters consisting of 0.7 dropout, batch size 8, and 32 dense 
nodes generated the highest normalized Matthews Correlation Coefficient at 0.909 and obtained 93.75% accuracy, 
96.00% sensitivity, 96.00% precision, and 96.00% F1-score. It also obtained higher classification performance as 
compared to the pre-trained architectures.

Conclusions. The results suggest that deep learning approaches through the use of CNN models can be deployed 
by nuclear medicine physicians in their clinical practice to further augment their decision skills in the interpretation 
of SPECT-MPI tests. These CNN models can also be used as a dependable and valid second opinion that can aid 
physicians as a decision-support tool as well as serve as teaching or learning materials for the less-experienced 
physicians particularly those still in their training career. These highlights the clinical utility of deep learning approaches 
through CNN models in the practice of nuclear cardiology.
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INTRODUCTION

Coronary artery disease (CAD) remains to be a leading 
cause of mortality and morbidity in many countries world-
wide.1 In the recent years, the incidence of CAD has also 
increased even among young members of the population.2 
Because of its huge public health impact particularly on 
health resource utilization and the associated costs, it remains 
to be one of the top health priorities in many regions around 
the world.3 CAD encompasses a lot of clinical problems 
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from asymptomatic subclinical atherosclerosis to its serious 
complications such as angina pectoris, acute myocardial 
infarction, and sudden cardiac death.4 In CAD, there is a 
narrowing or blockage of coronary blood vessels caused 
primarily by atherosclerotic plaque formation within the 
intima of the vessel wall leading to an abnormality in blood 
flow, thus resulting to reduced delivery of oxygen to the 
myocardium.5-7 This obstruction in the coronary vessels leads 
to myocardial ischemia and subsequent impairment of the 
myocardial functions. In its severe form, the ischemia can 
further lead to unwanted cardiac events such as myocardial 
infarction, lengthy hospitalization, chronic heart failure, and 
sudden cardiac death.1,8 Cardiologists usually refer patients 
to undergo non-invasive imaging modalities for a diagnosis 
of CAD as well as determining options for revascularization 
procedures, assessment of prognosis, and evaluating acute 
coronary syndromes.9

Single Photon Emission Computed Tomography – 
Myocardial Perfusion Imaging (SPECT-MPI) is one of the 
most requested imaging tests to diagnose CAD and has been 
shown to be a cost-effective modality due to its ability to 
significantly reduce frequency of unwarranted angiographies 
and permits pertinent treatment options.10,11 SPECT-MPI 
shows details of the distribution of a radioactive tracer in the 
myocardium reflecting myocardial perfusion and as such, it 
is a cost-efficient imaging test for determining presence and 
extent of CAD.11 To determine areas of the myocardium with 
decreased blood flow, the heart is imaged twice: scanning at 
rest and another scanning during stress. Visual evaluation of 
the SPECT-MPI images in various dimensions (vertical long 
axis, horizontal long axis, short axis) is performed by a nuclear 
medicine physician. However, the interpretation is largely 
dependent on his clinical experience and shows significant 
inter-observer variations.12 It is in this area of classification 
of SPECT-MPI images for CAD where deep learning 
approaches using convolutional neural networks (CNN) can 
be utilized to assist physicians in the diagnostic assessment 
thus enabling patients to responsibly monitor their style of 
living, diminishing the risks of serious cardiac events.13-15 
CNN is one of the various types of artificial neural networks 
and is specifically used for image recognition using processing 
of pixel data of medical images. It is differentiated with the 
traditional machine learning models as feature extraction and 
selection are done automatically through analysis of pixel 
data. Hence, CNNs can be applied on medical images such 
as the SPECT-MPI for assessment of any medical problem 
or conditions in patients, such as the presence of CAD. The 
use of CNN models enhances the SPECT-MPI diagnostic 
process leading to institution of the much-needed medical 
therapy to upgrade overall survival rates and/or quality of 
life of patients with CAD.13,15-18 The visual assessment of 
myocardial perfusion abnormalities in SPECT-MPI remains 
an important research challenge to both cardiologists and data 
scientists since many research studies in clinical medicine now 
involve applying a variety of machine learning algorithms, 

deep learning methods, and statistical techniques to improve 
CAD detection.19-23

In previous studies involving deep learning methods 
applied to nuclear medicine imaging, various types of 
CNN models were applied on bone scans of breast and 
prostate cancer patients to detect osseous metastasis.13,24–27 

Results demonstrated superior performance of these CNN 
models with several advantages such as high reliability, 
valid, faster, simpler architecture, and short training even 
with a comparatively smaller image dataset.13,25,26 In line 
with these recent updates, this study is being expanded for 
the generalization capabilities of CNN models in nuclear 
cardiology.

The objective of the study is to develop a CNN in the 
classification of SPECT-MPI for perfusion abnormalities. 
An exploratory approach of hyperparameter selection was 
made to search for the optimum neural network model in 
terms of classification performance. The notable contribution 
of this research is clearly delineated by the establishment 
of valid and reliable CNN models for the identification of 
CAD with acceptable performance metrics which can be 
utilized as physician decision support tools in the clinical 
nuclear cardiology practice. This research study shall assess 
the diagnostic performance of these CNN models in the 
detection of SPECT-MPI scans for CAD.

Review of Related Literature
In recent years, various artificial intelligence (AI) 

techniques have flourished in healthcare as clinical data 
become more progressively complicated. These techniques 
have become very prominent in cardiovascular imaging 
by computerizing many processes or calculations, find new 
patterns automatically in the data and specify differential 
diagnoses.28 Papandrianos and Papageorgiou10 applied a deep 
learning method to classify SPECT-MPI images as normal or 
abnormal with an impressive 93.47±2.81 accuracy and 0.936 
area under the receiver operating characteristics curve (AUC). 
They further reported their CNN model to be an efficient, 
and robust deep neural network in diagnosing blood flow 
abnormalities as seen in myocardial infarction and ischemia 
on SPECT-MPI images. In the study by Mostafapour et 
al., ResNet and UNet deep CNN models were utilized to 
generate a valid attenuation correction in SPECT-MPI 
images.29 In another study, authors employed transfer learning 
with pre-trained CNN to assess cardiac blood flow problems 
(myocardial infarction, myocardial ischemia) with 94% 
accuracy, 88% sensitivity, and 100% specificity and further 
concluded that the proposed CNN models could assist in 
physician decision making to make a diagnosis of infarction 
and ischemia in SPECT-MPI images.11 Chen et al. utilized 
CNN in the assessment of myocardial perfusion images 
for coronary heart diseases with 87.64% accuracy, 81.58% 
sensitivity, and 92.16% specificity, and concluded that use of 
the CNN model can significantly reduce the time needed for 
doctors to interpret the images, write reports and thus, can 
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help physicians in the diagnosis of coronary heart diseases 
reliably in clinical practice.30

Several studies have also applied CNN models on 
SPECT-MPI polar maps for myocardial perfusion abnor-
malities. Teuho et al.31, utilized CNN in the classification of 
polar maps for myocardial ischemia with 82.61% accuracy, 
0.8058 AUC, 76.47% F1-score, 65% sensitivity, 96.15% 
specificity, and 93.75% precision. CNN models using polar 
maps of SPECT-MPI was also analyzed in another study to 
forecast a patient’s 5-year survival rate after a cardiac event 
with a 0.77 accuracy. The CNN models used the frequency 
spectra as the input using fast Fourier transform on images 
instead of the usual raw images.32 In another study by Liu 
et al.33, authors applied CNN to assess for CAD from 
SPECT-MPI images with a 0.872 AUC, 82.7% accuracy, 
74.4% sensitivity, and 84.9% specificity. A simple CNN for 
classification of SPECT-MPI images into binary categories 
(normal, ischemia) was used in another study.10 After the 
application of data augmentation technique, an exploratory 
approach utilizing different number of layers, batch sizes, 
pixel size, and dense nodes was performed with the CNN 
generating a 90.20% accuracy and a 0.9377 AUC. Authors 
further concluded that the use of CNN models offered 
additional benefits for diagnostic challenge, as these models 
generated more robust and dependable outcomes compared 
to the usual purely clinical methods.

In summary, most of the works focused on the diagnosis 
of CAD from SPECT- MPI using deep learning methods. 
Their results served as the backbone for our preliminary 
simulations to discover the most satisfactory network 
architecture and its corresponding network parameters.

MATERIALS AND METhODS

The SPECT-MPI data images were obtained from a 
publicly available machine learning image repository. The 
pre-processing steps consisting of image normalization, 
data shuffling, and geometric augmentation techniques were 
applied to the images. After a train-test split, the pre-processed 
data was then fed to the base CNN and other commonly 
used pre-trained CNNs on medical images (InceptionV3, 
DenseNet121, VGG16 and ResNet50). Classification 
performance of these CNN models was assessed using 
various metrics. All simulation experiments were performed 
in Kaggle because of the free use of NVIDIA TESLA P100 
GPUs. TensorFlow 2.6.0., Keras 2.6.0, and Python language 
3.7.10 were employed in this study. Figure 1 shows the deep 
learning pipeline for this research study.

Dataset Description
A publicly available anonymized SPECT-MPI from 

a data repository (https://www.kaggle.com/selcankaplan/
spect-mpi) was used in this study.34 The dataset contains 
192 patients who underwent stress-test-rest Tc99m MPI. 
There was data imbalance with 150 patients (78%) having 

coronary artery disease while 42 patients (22%) do not have 
coronary artery disease.

Sample SPECT-MPI images with and without CAD 
are shown in Figures 2 and 3, respectively. The assessment 
of the SPECT-MPI images for perfusion defects is made 
by nuclear medicine physicians or nuclear cardiologists 
by comparing the stress images with rest images across all 
dimensions (vertical long axis, horizontal long axis, and short 
axis). A blood perfusion abnormality detected in stress images 
with no corresponding abnormality in rest images is classified 
as myocardial ischemia while an abnormality detected in both 
stress and rest images is labelled as myocardial infarction.11 
For this study, SPECT-MPI images with ischemia and/or 
infarction is diagnosed as having CAD while those images 
without perfusion defects are classified as not having CAD. 
Figure 2 shows tracer inhomogeneity in the anterior and 
antero-lateral walls of the myocardium seen in stress images 
but not on the resting images. This finding is typical of 
stress- induced myocardial ischemia and hence, classified 
as having CAD. On the other hand, the image shown in 
Figure 3 demonstrates uniform radiotracer distribution in 
all of the myocardium in both stress and rest images which 
is indicative of the absence of CAD.

Pre-processing Steps
The pre-processing steps applied to the dataset were 

Min-Max normalization of SPECT-MPI images, shuffling 
of images to generate random order of images, train – 
test split, and geometric augmentation.13 The dataset was 
divided in three parts: testing (20%) and the rest (80%) was 
further divided to 80% for training and 20% for validation. 

Figure 1. Deep learning pipeline in the classification of SPECT-
MPI for CAD.
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The following typical geometric augmentations were applied 
to the images in the training: zoom range = +0.15, rotation 
range = +15, shear range = +0.30, translation = +0.15, and 
horizontal flipping. To handle data imbalance, class weights 
were applied using inverse proportion of class frequencies.

Base CNN Model Architecture
An exploratory approach with bibliographic research was 

employed to create a CNN architecture for the assessment of 
CAD. The parameters needed for a good network architecture 
were examined as to batch size, drop-out rate, and the dense 
nodes. Similar to the previous studies in the literature9-11,13 
and after a series of various preliminary model configurations 
for this study in finding the best model configuration as to the 
number of layers of a simple base CNN and its parameters 
such as the input size, the number of epochs, learning rate, 
activation function, etc., a final model configuration of a 
layered sequential neural network architecture consisting 
of three convolutional layers followed by max pooling was 
made. This was followed by flattening layer where it reshapes 
the multidimensional array of pixels to one-dimensional 
for extracting the output, a dropout layer, one dense layer 
followed by an output layer.10 The use of a simple neural 
network would be an impediment against overfitting which 
may possibly occur.13 Rectified Linear Unit (ReLU) activation 
function was employed in all convolutional and dense layers 
while sigmoid activation function was utilized in the final 
output layer for binary classification of with or without 
CAD. A filter size of 32, 64 and 128, sequentially and with 
kernel size of 3x3 was applied in the convolutional layers. 
Maximum values were utilized in the pooling layers which 
had 2x2 kernel size. The number of filters was increased in 
each layer to extract the more complicated trends and patterns 

of the SPECT-MPI image in the training network. The 
loss function used was binary cross entropy with Adam, an 
adaptive learning rate optimization method, as the optimizer.9 
Figure 4 shows the architecture for this study.

Hyperparameters Search
The different combinations of batch sizes, dense nodes, 

and drop-out rates were analyzed in various simulation 
experiments to search for the optimum model configuration. 
An exploratory approach in the development of the base 
CNN model with optimum hyperparameters was utilized 
with examination of batch sizes (8, 16, 32, 64), drop-out rates 
(0.2, 0.5, 0.7), and dense nodes (32, 64, 128, 256). Based on 
the preliminary simulations, the input pixel size was fixed at 
256 x 256 x 3 while the number of epochs was set at 50.

Comparison with Pre-Trained CNN Models
Comparison between the base CNN model and the 

pre-trained models typically used in medical images such 
as VGG16, InceptionV3, DenseNet121, and ResNet50 
was also performed. This group of pre-trained models is a 
mixture of shallower and deeper layer CNN’s. VGG16 
contains 16 weight layers and usually developed using 3 x 
3 convolutional layers attached to each other architecture 
with 1.3 x 108 trainable free parameters and has specific 
network structure that is simple to change.25,26,35 ResNet50, 
involves a 50-weight layer version of ResNet (Residual neural 
Network) having 2.3 x 107 trainable parameters and has been 
introduced to address the vanishing degradation challenge of 
model training that causes performance deterioration in the 
models.25,26,36 DenseNet121 has 121 layers with more than 
8 million parameters and is partitioned into DenseBlocks 
with feature maps having same dimensions within the 

Figure 2. Sample SPECT-MPI image with CAD. Figure 3. Sample SPECT-MPI image without CAD.
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block but with different number of filters. The transition 
layers between blocks apply batch normalization for down-
sampling.37 InceptionV3 is a 48-layer deep network with 
fewer parameters (2.1 x 107 trainable free parameters).26

Performance Metrics
To evaluate the diagnostic performance of the CNN 

models, accuracy, recall (sensitivity), precision (positive 
predictive value), and F1-scores were computed. To determine 
the best performing model, normalized Matthews correlation 
coefficient (nMCC) was used because it provides more 
information and thus, more enlightening than accuracy 
and F1-scores since it considers all entries in the confusion 
matrix.38

RESULTS

There was a total of 192 patient images included in the 
CNN model building. The results of the various simulation 
experiments in the base CNN model with respect to the 

batch sizes, dense nodes, and drop-out rates to determine 
optimal parameters are shown in Tables 1 (drop-out = 0.2), 
2 (drop-out = 0.5), and 3 (drop-out = 0.7). For dropout 0.2, 
the best configuration was obtained by batch size 16 and 
dense nodes 128 with a superior performance metrics of 
93.75% accuracy, 100% sensitivity, 95.29% precision, 96.15% 
F1-score and a nMCC of 0.907. As shown in Table 1, 
generally, batch sizes 8 and 32 yielded lower performance 
metrics while batch size 64 fared poorly.

Table 2 shows the performance metrics of the base CNN 
model for drop-out 0.5. Similarly, the best configuration 
was obtained by batch size 16 and dense node 256 as 
it generated the highest nMCC and accuracy at 0.857 
and 90.62%, respectively. Batch sizes 8 and 32 obtained 
lower performance metrics while batch 64 classification 
performance was below par.

The performance metrics of the base CNN model for 
dropout 0.7 is shown in Table 3. The optimum configuration 
was obtained by batch size 8 and dense node 32 with 
the highest nMCC and accuracy of 0.909 and 93.75%, 

Table 1. Performance Metrics of the Base CNN Model for Drop-Out = 0.2
Batch Size Dense Nodes Accuracy Recall Precision F1-score nMCC

8

32 81.25 92.00 85.19 88.46 0.698
64 78.12 100.00 78.13 87.72 0.500

128 81.25 100.00 80.65 89.29 0.670
256 78.12 100.00 78.13 87.72 0.500

16

32 90.62 92.00 95.83 93.88 0.871
64 81.25 100.00 80.65 89.29 0.670

128 93.75 100.00 95.29 96.15 0.907
256 84.38 88.00 91.67 89.80 0.784

32

32 75.00 92.00 79.30 85.19 0.545
64 84.38 100.00 83.33 90.91 0.744

128 78.12 100.00 78.13 87.72 0.500
256 78.12 100.00 78.13 87.72 0.500

64

32 78.12 100.00 78.13 87.72 0.500
64 78.12 100.00 78.13 87.72 0.500

128 78.12 100.00 78.13 87.72 0.500
256 78.12 100.00 78.13 87.72 0.500

Figure 4. CNN architecture for SPECT-MPI classification for CAD.

VOL. 58 NO. 8 2024 71

SPECT-MPI for Coronary Artery Disease: A Deep Learning Approach



out 0.7. It generated the highest nMCC at 0.909 and obtained 
93.75% accuracy, 96.00% sensitivity, 96.00% precision, 
and 96.00% F1-score. Table 4 and Figure 5 highlight the 
comparison of the performance metrics between the best 
base CNN model and the pre-trained architectures. The 
base model outperformed the other models as it yielded the 

Table 3. Performance Metrics of the Base CNN Model for Drop-Out = 0.7
Batch Size Dense Nodes Accuracy Recall Precision F1-score nMCC

8

32 93.75 96.00 96.00 96.00 0.909
64 84.38 92.00 88.46 90.20 0.760

128 78.12 100.00 78.13 87.72 0.500
256 84.38 100.00 83.33 90.91 0.744

16

32 78.12 100.00 78.13 87.72 0.500
64 84.38 96.00 85.71 90.57 0.743

128 87.50 92.00 92.00 92.00 0.817
256 78.12 100.00 78.13 87.72 0.500

32

32 84.38 100.00 83.33 90.91 0.744
64 81.25 100.00 80.65 89.29 0.670

128 87.50 100.00 86.21 92.59 0.804
256 81.25 96.00 82.76 88.89 0.674

64

32 78.12 100.00 78.13 87.72 0.500
64 78.12 100.00 78.13 87.72 0.500

128 78.12 100.00 78.13 87.72 0.500
256 78.12 100.00 78.13 87.72 0.500

Table 2. Performance Metrics of the Base CNN Model for Drop-Out = 0.5
Batch Size Dense Nodes Accuracy Recall Precision F1-score nMCC

8

32 84.38 100.00 83.33 90.91 0.744
64 87.50 92.00 92.00 92.00 0.817

128 78.12 100.00 78.13 87.72 0.500
256 81.25 100.00 80.65 89.29 0.670

16

32 81.25 100.00 80.65 89.29 0.670
64 81.25 100.00 80.65 89.29 0.670

128 78.12 100.00 78.13 87.72 0.500
256 90.62 96.00 92.31 94.12 0.857

32

32 81.25 100.00 80.65 89.29 0.670
64 78.12 100.00 78.13 87.72 0.500

128 84.38 100.00 83.33 90.91 0.744
256 81.25 100.00 80.65 89.29 0.670

64

32 78.12 100.00 78.13 87.72 0.500
64 78.12 100.00 78.13 87.72 0.500

128 78.12 100.00 78.13 87.72 0.500
256 78.12 100.00 78.13 87.72 0.500

Table 4. Comparative Performance of CNN Models
CNN Models Accuracy Recall Precision F1-score nMCC

Base 93.75 96.00 96.00 96.00 0.909
VGG16 84.38 100.00 83.33 90.91 0.744
ResNet50 81.25 100.00 80.65 89.29 0.670
DenseNet121 90.62 88.00 100.00 93.62 0.892
InceptionV3 84.38 80.00 100.00 88.89 0.842

respectively. Batch sizes 16 and 32 (except for batch size 16, 
dense node 256) generally have much lower performance as 
compared to batch size 8. Similarly, batch size 64 performed 
poorly for this dataset.

Overall, the top performing base CNN model confi-
guration was obtained by batch size 8, dense nodes 32, drop-
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highest nMCC, accuracy, and F1- scores. This was followed 
very closely by DenseNet121 with a 90.62% accuracy and 
0.892 nMCC.

DISCUSSION

In the past several years, there has been a significant 
increase in the number and variety of cardiovascular 
imaging seen in clinical practice to assist physicians in the 
detection of cardiac conditions as well as a guide for the 
choice of therapeutic options for the patients. Typically, a 
cardiologist would refer a patient initially for a less-invasive 
cardiac imaging modality such as SPECT-MPI to assess 
for coronary artery disease.9,39 The clinical and prognostic 
value of these cardiovascular imaging tests is constrained 
and challenged by the presence of significant intra and 
interobserver variability, suboptimal image quality, time-
consuming process, operators’ fatigue, etc.12,40 Some of these 
issues can be addressed by applying AI in cardiovascular 
imaging which has also prospered in recent years. AI is 
being utilized in the processing of cardiac imaging data at 
different levels of increasing complexity.41 At the examination 
level, AI is being utilized to simplify image acquisition and 
processing with higher image resolution while at reading and 
reporting levels, AI focuses on automatic detection of lesions 
with description of features and corresponding assessment of 
extent and size in the images. Additionally, at the prediction 
and prescription levels, AI focuses on risk prediction and 
stratification, as opposed to merely detecting, measuring, and 
quantifying images such as an AI-based CT-fractional flow 
reserve modeling.

Deep Learning (DL) is a subset of machine learning 
based on the concept of artificial neural network algorithms.42 
As such, DL has more extensive computations and higher 
number of parameters which in turn allow DL models to 
learn more from the data. Lately, many medical image 
processing procedures have adopted DL approaches ranging 

from fundus images, endoscopic images, ultrasound images, 
cardiovascular images, CT/MRI images, and pathological 
images. Currently, DL methods is mainly used in classification 
and segmentation in medical images.40,43,44 Further use of DL 
methods will largely depend on continuing accumulation of 
medical big data for training which is expected to happen 
soon. However, in cases where there is limited size of 
medical cohorts for training by the DL models and the cost 
of expert-annotated data sets is extremely prohibitive, these 
can be addressed by the use of transfer learning techniques.45 
Transfer learning aims to generate high performance on 
target tasks by using the knowledge learned in advance from 
other source tasks. This allows the use of DL approaches even 
with a smaller medical dataset.13,25,26,45

In this study, a simple base CNN model for the 
classification of SPECT-MPI images for CAD was created 
with optimum parameters using an exploratory approach 
combined with bibliographic search. The base CNN 
model despite having a simpler and shallower architecture 
outperformed the deeper pre-trained architectures commonly 
applied on medical images. It is important to emphasize that 
simpler CNN architecture can be as effective as the deeper 
CNN architecture so long as the network parameters have 
been fine-tuned.

The performance metrics based on the accuracy rates 
and nMCC of the base CNN model were comparable 
with those reported in the literature.9-11 The outcomes 
suggest that this can be a valid and reliable tool for the 
evaluation of SPECT-MPI images for CAD even with a 
small dataset.10,11,13 Additionally, these models can serve 
as learning materials for the less experienced doctors 
particularly those still in their training career. These models 
can also be used as a valid and dependable second opinion 
that can aid physicians as a decision support tool.10,11,13,15 This 
highlights the clinical utility of these CNN models in nuclear 
cardiology. Nonetheless, it is important to underscore that 
while DL approaches through CNN models can be a helpful 
tool for the evaluation of images in cardiac imaging more 
particularly on the reporting and interpretation, these CNN 
models cannot replace human expert readers.40 These models 
are merely useful tools for enhanced implementation of 
a clinical workflow.

CONCLUSIONS AND RECOMMENDATIONS

The use of CNN has shown its capability to diagnose 
CAD in SPECT – MPI images. Several CNN models 
through an exploratory approach were investigated to 
determine the CNN architecture with the optimum network 
configuration. Simulation experiments showed the optimum 
model configuration had the following parameters: epochs 
= 50, input pixel size = 256 x 256 x 3, batch size = 8, dense 
node = 32, and drop-out = 0.7. It generated the highest 
nMCC at 0.909, 93.75% accuracy, 96.00% sensitivity, 
96.00% precision, and 96.00% F1-score. Additionally, the 

Figure 5. Performance metrics of the CNN models for CAD 
classification.
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base CNN model outperformed the commonly used pre-
trained architectures (VGG16, InceptionV3, DenseNet121, 
and ResNet50) in medical images. The results suggest 
that CNN models can be valid tools to classify SPECT-
MPI images, even with a small image dataset. This study 
showed encouraging outcomes which can be deployed in 
the daily workflow routine by nuclear medicine physicians 
in their clinical practice thereby augmenting their decision 
skills in the interpretation of SPECT-MPI tests. These 
models can also be utilized as valid and dependable second 
opinions that can aid physicians as a decision support tool 
as well as serve as teaching or learning materials for the 
less-experienced physicians particularly those still in their 
training career. These highlights the clinical utility of deep 
learning approaches through CNN models in the practice of 
nuclear cardiology. For future work, there is a need to further 
expand the performance of the models using large dataset 
and consider adding clinical data to perfusion data. It is also 
recommended to employ a dataset of SPECT-MPI images 
with coronary angiography as the gold diagnostic standard 
rather than an expert reader interpretation.
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