### DOI:10.3872/j.issn.1007-385x.2020.03.013

## ・临床研究・

## 非小细胞肺癌组织免疫微环境的特点及其临床意义

李向敏<sup>1</sup>,樊再雯<sup>2</sup>,毛志远<sup>2</sup>,张兰兰<sup>1</sup>,晋颖<sup>2</sup>,于海燕<sup>2</sup>(1.河北北方学院研究生学院临床医学系,张家口075031;2.空军特色医学中心肿瘤内科,北京100142)

[摘 要] **月 约**:探讨基于非小细胞肺癌(non-small cell lung cancer,NSCLC)患者原发灶组织中程序性死亡受体-配体1(programmed death-ligand 1,PD-L1)表达和间质中CD8\*T细胞浸润的免疫微环境分型的特点及其临床意义。*动***法**:回顾性分析2016 年1月到2018年7月空军特色医学中心收治的74例NSCLC患者的石蜡组织标本及临床病理资料,所有患者均有EGFR基因检测 结果、未接受放化疗及靶向治疗。采用免疫组化方法检测组织中PD-L1表达及间质中CD8\*T细胞浸润,分别分析PD-L1、CD8\*T 细胞及基于两者的免疫微环境分型与病理参数和患者生存的关系。**结果:NSCLC患者原发灶组织中PD-L1表达在不同性别、病** 理类型、吸烟史、EFGR 突变组中有明显差异(均*P*<0.05),CD8\*T细胞浸润在不同TNM分期、淋巴结转移组织各组中有明显差异 (均*P*<0.05);PD-L1表达与EGFR 突变显著相关(*P*=0.000),而CD8\*T细胞浸润与EGFR 突变不相关(*P*=0.605)。EGFR 野生型患 者免疫微环境以CD8\* PD-L1\*(I型)为主、突变型以CD8\* PD-L1\*(II型)及CD8\* PD-L1\*(IV型)为主。免疫微环境分型在不 同EGFR 突变、吸烟史、病理分化程度的各组中分布有明显差异(均*P*<0.05),且与EGFR 突变显著相关(*P*<0.05)。随访显示处于 无病生存期、复发转移和死亡患者中分别以I型、II型和I型最多。**结论**:本组 NSCLC患者肿瘤免疫微环境分型分布主要以 I型最多、III型最少,其分型与EGFR 突变、吸烟史及病理分化有关;EGFR 突变患者以CD8\* PD-L1\*(II)型和CD8\* PD-L1\*(IV型) 为主,且与PD-L1低表达相关。

[关键词] 非小细胞肺癌;程序性死亡受体-配体1;表皮生长因子受体;免疫微环境 [中图分类号] R734.2;R730.3 [文献标识码] A [文章编号] 1007-385X(2020)03-0295-07

# Charaoteristics and clinical significance of immune microenvironment in nonsmall cell lung cancer tissues

LI Xiangmin<sup>1</sup>, FAN Zaiwen<sup>2</sup>, MAO Zhiyuan<sup>2</sup>, ZHANG Lanlan<sup>1</sup>, JIN Ying<sup>2</sup>, YU Haiyan<sup>2</sup> (1. Department of Clinical Medicine, Graduate College, Hebei North University, Zhangjiakou 075031, Hebei, China; 2. Department of Medical Oncology, Air Force Medical Center, Beijing 100142, China)

[Abstract] Objective: To investigate the characteristics and clinical significance of the immunomicroenvironment typing based on the expression of programmed death-ligand 1 (PD-L1) and the infiltration of CD8<sup>+</sup> T cells in the stroma in patients with non-small cell lung cancer (NSCLC). Methods: Paraffin tissue specimens and relevant clinicopathological data of 74 NSCLC patients admitted to our hospital from January 2016 to July 2018 were collected. All patients received EGFR gene test, and none received radiotherapy, chemotherapy or targeted therapy. Immunohistochemistry was used to detect the expression of PD-L1 in tissues and the infiltration of CD8<sup>+</sup>T cells in interstitium, and the relationship between PD-L1, CD8<sup>+</sup>T cells, and the immune microenvironment typing based on both, and the pathological parameters and the survival of patients was analyzed. Results: PD-L1 expression in the primary tumor of NSCLC patients showed statistical differences in gender, pathological type, smoking history, EFGR gene mutation status (P<0.05). The infiltration of CD8<sup>+</sup> T lymphocytes in tumor microenvironment showed statistically significant differences in different TNM stage and lymph node metastasis (P<0.05), PD-L1 expression was significantly correlated with EGFR mutation (P=0.000), while CD8<sup>+</sup>T lymphocyte infiltration was not correlated with EGFR mutation (P=0.605). The immunomicroenvironment of EGFR wild-type patients was mainly (CD8<sup>+</sup> PD-L1<sup>+</sup>) (type I), and the mutants were mainly (CD8<sup>+</sup>PD-L1<sup>-</sup>) (type II) and (CD8<sup>+</sup>PD-L1<sup>-</sup>) (type IV). The distribution of immune micro-environmental typing in each group with different EGFR mutation (P<0.05). Follow-up showed that the patients with disease-

[作者简介] 李向敏(1989-),硕士生,医师,主要从事肺癌的靶向治疗和免疫治疗研究,E-mail:375390708@qq.com

 $\oplus$ 

<sup>[</sup>基金项目] 北京市科学技术委员会项目(No. Z171100000417029);空军特色医学中心课题(No. KZ2015034)。Project supported by the Beijing Municipal Commission of Science and Technology(No. Z171100000417029), and Air Force Medical Project (No. KZ2015034)

<sup>[</sup>通信作者] 樊再雯(FAN Zaiwen, corresponding author),博士,主任医师,硕士生导师,主要从事肺癌的基础与临床研究,E-mail:kzzaiwenfan@163.com

free survival, recurrence and metastasis and death were the most in type I, type II and type I, respectively. **Conclusions:** In this study, the distribution of tumor immunomicroenvironmental typing in NSCLC patients was mainly the highest in type I and the lowest in type III, which was related to EGFR mutation, smoking history and pathological differentiation. Patients with EGFR mutations were mainly of type II and type IV, and were associated with low expression of PD-L1.

[Key words] non small cell lung carcinoma (NSCL); programmed death-ligand 1(PD-L1); epidermal growth factor receptor(EGFR); immunemicroenvironment

 $-\oplus$ 

[Chin J Cancer Biother, 2020, 27(3): 295-301. DOI: 10.3872/j.issn.1007-385X.2020.03.013]

肺癌是威胁人类健康的主要恶性肿瘤之一,其 中约80%为非小细胞肺癌(non small cell lung, NSCLC),NSCLC中50%以上为肺腺癌<sup>[1-2]</sup>;亚裔肺腺 癌患者中EGFR突变者占30%~50%,其中不吸烟者 中EGFR的突变率更高,可达60%<sup>[3]</sup>。众所周知,靶向 药物研发并应用于临床,明显延长 EGFR 突变型 NSCLC 患者的生存期,但最终都避免不了靶向药物 耐药14,耐药后这部分患者生存期明显缩短。免疫治 疗近年来广泛用于多种恶性肿瘤的治疗,国家药品 监督管理局(National Medical Products Administration, NMPA) 2018 年 6 月 批准 nivolumab 用于晚期 NSCLC患者二线治疗、7月批准 pembrolizumab 用于 晚期NSCLC患者一线治疗。虽然免疫检查点抑制剂 的治疗具有超长应答的特点,但其应用于NSCLC患 者治疗的有效率仅在20%左右<sup>[5]</sup>,对EGFR突变型 NSCLC患者有效率更低<sup>161</sup>,其机制尚不明确。因此积 极探索免疫检查点抑制剂获益的生物标志物,进一 步深化NSCLC患者免疫微环境的研究,对于改善 NSCLC患者生存期及实现精准免疫治疗非常重要。 本研究从NSCLC患者原发灶、转移灶入手,分析不同 病变组织PD-L1的表达、CD8<sup>+</sup>T细胞浸润的差异,并 分析基于两者的肿瘤免疫微环境分型分布特点,同 时分析EGFR突变型和野生型NSCLC患者免疫微环 境的差异,为筛选免疫检查点抑制剂治疗获益的 NSCLC患者提供实验依据。

#### 1 资料与方法

#### 1.1 一般资料

收集2016年1月到2018年7月空军特色医学中 心病理科存档的74例NSCLC患者石蜡组织标本及 相关临床病理资料,其中有淋巴结转移者24例;男性 44例,女性30例;年龄39~84岁,中位年龄59岁;按 照WHO病理分类包括鳞癌24例,腺癌50例;I期患 者37例,II期患者14例,III期患者17例,IV期患者6 例;EGFR基因突变型30例,野生型44例;有淋巴结 转移者24例,无淋巴结转移者50例(表2)。所有患 者均未接受过放化疗、靶向治疗,并且无其他恶性肿 瘤、自身免疫性疾病及严重感染性疾病,研究方案得 到医院伦理委员会批准,所有患者或家属均告知并签 署知情同意书,以电话、门诊、住院等形式对患者进行随访,随访截止2019年7月。

#### 1.2 仪器设备及试剂

PD-L1检测使用丹麦 Dako 公司全自动免疫组化 染色仪 Autostainer Link 48。PD-L1 单克隆抗体 22C3 (A-M355329-8)及配套二抗试剂盒、抗原修复液、 DAB 显色剂等均购自 Dako 公司,兔抗人 CD8 单克隆 抗体(ZA-0508)、兔二步法试剂盒 PV-6001、DAB 显 色试剂盒 ZLI-9018 购自北京中杉金桥生物技术有限 公司。石蜡组织4 µm 连续切片,捞于防脱片上,于 65 ℃烤箱烘烤 1~2 h 脱蜡。

1.3 免疫组化法检测组织中PD-L1的表达

PD-L1免疫组化检测均由 Dako Autostainer Link 48 全自动免疫组化染色仪完成,一抗(1:50)、二抗、 DAB 显色剂及复染液均为全自动免疫组化染色仪配 套封闭套装。

1.4 免疫组化法检测CD8+T细胞

切片置于 pH 6.0 柠檬酸缓冲液进行抗原修复,高 压锅开始喷气 2.5 min 后关闭自然冷却,3% H<sub>2</sub>O<sub>2</sub>处理 10 min 封闭抗原,磷酸盐缓冲液洗涤 5次、每次 1~3 min,免疫组化油笔画圈,兔抗人CD8单克隆抗体 (ZA-0508)(1:200)4 ℃ 孵育过夜,二抗 37 ℃孵育 30 min,DAB 显色,苏木精衬染,封片。

1.5 免疫组化法检测结果判读标准

PD-L1和CD8T细胞结果判读由2位病理医师行 双盲阅片,每张切片随机选取5个高倍视野(×400), 以镜下阳性细胞百分比和染色强度的乘积给以评分。

(1)PD-L1表达判读标准:PD-L1染色阳性为肿瘤 细胞胞膜和(或)胞质出现棕黄色颗粒,肿瘤细胞中着 色细胞占细胞总数的百分率以<1%、1%~10%、10%<~ 50%、50%<~100%分别计为0、1、2、3分;阳性细胞染色 强度以无色、淡黄色、棕黄色、棕褐色分别计为0、1、2、 3分。两者相乘最终得分为PD-L1免疫组化结果:0分 为阴性(-),1~3分为弱阳性(+),4~6分为阳性(++),7~9 分为强阳性(++)。阴阳性定义为0分为阴性、1分为弱 阳性、2分为阳性、3分为强阳性。

(2)CD8<sup>+</sup>T细胞判读标准:CD8T细胞染色阳性为 肿瘤间质细胞胞膜出现棕黄色颗粒,肿瘤间质细胞 中着色细胞占间质细胞总数的百分率以<1%、1%<~

· 296 ·

5%、5%<~10%、>10%分别计为0、1、2、3分;阳性细胞 染色强度计分同 PD-L1。两者相乘最终得分为 CD8<sup>+</sup>T细胞浸润结果:0分为无浸润(-),1~3分为轻 度浸润,4~6分为中度浸润,7~9分为重度浸润。浸润 程度定义0分为无浸润、1分为轻度浸润、2分为中度 浸润、3分为重度浸润。

1.6 统计学处理

数据分析用 SPSS 20.0 统计学软件, PD-L1 的表达、CD8<sup>+</sup>T 细胞的浸润、免疫微环境分型在不同 NSCLC 患者中分布差异比较采用 2<sup>2</sup>检验,采用 Spearman 检验分析 PD-L1 表达、CD8<sup>+</sup>T 细胞浸润、不同免疫微环境分型与 EGFR 突变的相关性。以 P<0.05 或 P<0.01 表示差异有统计学意义。

## 2 结 果

2.1 PD-L1与CD8⁺T细胞在不同病变组织中的表达 与浸润

PD-L1在NSCLC患者原发灶、淋巴结转移组织中阳性表达率分别为51.3%、37.5%,PD-L1在两种不同病变组织中表达有显著差异(P<0.05,图1、表1)。 CD8<sup>+</sup>T细胞在NSCLC患者原发灶、转移淋巴结中的 浸润率分别为68.9%、41.6%,其在两种不同病变组织 中表达无明显差异(P>0.05,图2)。NSCLC患者原发 灶与转移淋巴结组织中PD-L1的表达没有相关性(r= 0.161, P=0.510), CD8<sup>+</sup>T细胞在原发灶与转移淋巴结 中的浸润亦无相关性(r=0.251, P=0.248)。



A<sub>5</sub>B<sub>5</sub>C<sub>5</sub>D: Strongly positive, positive, weakly positive and negative expression of PD-L1 in tumor tissues of NSCLC patients respectively; E: Positive expression of PD-L1 in metastatic lymph node tissues of NSCLC patients; F: Negative expression of PD-L1 in metastatic lymph node tissues of NSCLC patients

> 图 1 PD-L1在NSCLC组织中表达的免疫组化检测结果(EnVision,×400) Fig.1 Immunohistochemical results of PD-L1 expression in NSCLC tissues (EnVision,×400)



A,B,C,D: Intensity infiltration, moderate infiltration, mild infiltration and no infiltration of CD8<sup>+</sup>T lymphocytes in tumor tissues of NSCLC patients respectively; E: Positive infiltration of CD8<sup>+</sup>T lymphocytes into metastatic lymph node tissues in NSCLC patients; F: Negative infiltration of CD8<sup>+</sup>T lymphocytes into metastatic lymph node tissues of NSCLC patients 图 2 CD8<sup>+</sup>T 淋巴细胞在 NSCLC 组织中浸润的免疫组化检测结果(EnVision,×400)

Fig.2 Immunohistochemical results of CD8<sup>+</sup>T lymphocytes infiltration in NSCLC tissues(EnVision,×400)

|            |      | 表1    | PD-L    | 1和CI    | D8 T ź              | 细胞在不同   | <b>INSCLC</b> | 组织中的<br>  | り表达   | 情况(n)   | )               |       |       |       |       |
|------------|------|-------|---------|---------|---------------------|---------|---------------|-----------|-------|---------|-----------------|-------|-------|-------|-------|
|            | Tab. | 1 Exp | pressio | on of F | PD-L1               | and CD8 | T cell in o   | different | NSCL  | C tissu | 1es( <i>n</i> ) |       |       |       |       |
| Tissue     | Ν    | N     | N       | C       | D8 <sup>+</sup> T c | ell sco | ore           | - 02      | D     | ]       | PD-L1           | score |       | - 2   | D     |
|            |      | 0     | 1       | 2       | 3                   | χ       | 1             | 0         | 1     | 2       | 3               | χ     | Г     |       |       |
| Primary    | 74   | 23    | 37      | 10      | 4                   | 10.123  | 10 122        | 10 122    | 0.012 | 36      | 19              | 14    | 5     | 5 (70 | 0 111 |
| Lymph node | 24   | 14    | 4       | 3       | 3                   |         | 0.015         | 15        | 4     | 1       | 4               | 5.078 | 0.111 |       |       |

2.2 PD-L1表达及浸润CD8<sup>+</sup>T细胞在不同NSCLC 组织中的差异

原发灶中PD-L1表达在不同性别、病理类型、吸烟史、EFGR突变的NSCLC组织中表达差异有统计学意义(P<0.05),在不同年龄、Ki-67、TNM分期、淋巴结转移及分化程度的NSCLC组织中差异无统计学意义(P>0.05,表2)。CD8<sup>+</sup>T细胞浸润在不同TNM分期、淋巴结转移的NSCLC组织中差异有统计学意义(P<0.05),在不同性别、年龄、病理类型、Ki-67、吸烟史、EGFR突变及肿瘤细胞分化程度的NSCLC组织中差异无统计学意义(P>0.05,表3)。NSCLC原发灶组织中PD-L1表达与其间质中CD8<sup>+</sup>T细胞浸润不相关(r=0.034, P=0.772)。

### 表2 NSCLC 原发灶中 PD-L1 的表达与临床病理参数的关系(*n*) Tab.2 Relationship between the expression of PD-L1

in NSCLC primary tumor and various clinicopathological

| parameters(n)        |                 |       |       |   |        |       |  |  |  |
|----------------------|-----------------|-------|-------|---|--------|-------|--|--|--|
| Clinia 1 factors     | ]               | PD-L1 | score |   | .2     |       |  |  |  |
| Clinical leature     | 0               | 1     | 2     | 3 | - X    | P     |  |  |  |
| Gender               |                 |       |       |   |        |       |  |  |  |
| Male                 | 18              | 8     | 13    | 5 | 13.875 | 0.001 |  |  |  |
| Female               | 18              | 11    | 1     | 0 |        |       |  |  |  |
| Age $(t/a)$          |                 |       |       |   |        |       |  |  |  |
| ≥60                  | 15              | 9     | 8     | 3 | 11.424 | 0.722 |  |  |  |
| <60                  | 21              | 10    | 6     | 2 |        |       |  |  |  |
| Pathologic types     |                 |       |       |   |        |       |  |  |  |
| Squamous cell        | 8               | 3     | 9     | 4 | 14.563 | 0.002 |  |  |  |
| Adeno                | 21              | 16    | 5     | 2 |        |       |  |  |  |
| Ki-67                |                 |       |       |   |        |       |  |  |  |
| Ki-67≥5%             | 24              | 13    | 13    | 3 | 4.701  | 0.098 |  |  |  |
| Ki-67<5%             | 8               | 9     | 6     | 2 |        |       |  |  |  |
| Smoking              |                 |       |       |   |        |       |  |  |  |
| Yes                  | 11              | 6     | 12    | 5 | 19.669 | 0.000 |  |  |  |
| No                   | 25              | 13    | 2     | 0 |        |       |  |  |  |
| EGFR                 |                 |       |       |   |        |       |  |  |  |
| Mutant               | 23              | 6     | 1     | 0 | 18.660 | 0.000 |  |  |  |
| Wild                 | 13              | 13    | 13    | 5 |        |       |  |  |  |
| Stage                |                 |       |       |   |        |       |  |  |  |
| I+II                 | 28              | 12    | 8     | 3 | 3.024  | 0.436 |  |  |  |
| III+IV               | 8               | 7     | 6     | 2 |        |       |  |  |  |
| Lymphatic metastasis |                 |       |       |   |        |       |  |  |  |
| N <sub>0</sub>       | 26              | 13    | 7     | 1 | 6.201  | 0.091 |  |  |  |
| N <sub>1-3</sub>     | 10              | 6     | 7     | 4 |        |       |  |  |  |
| Differentiation      | Differentiation |       |       |   |        |       |  |  |  |
| High                 | 8               | 6     | 1     | 0 | 10.175 | 0.064 |  |  |  |
| Moderate             | 22              | 5     | 8     | 3 |        |       |  |  |  |
| Low                  | 6               | 8     | 5     | 2 |        |       |  |  |  |

表3 NSCLC 间质中 CD8<sup>+</sup>T 细胞浸润与临床病理参数的关系(*n*) Tab.3 Relationship between infiltration of CD8<sup>+</sup>T cell in NSCLC stroma and clinicopathological parameters(*n*)

|                   | Cl  | D8 <sup>+</sup> T ce | ell sco | re | 2     |       |
|-------------------|-----|----------------------|---------|----|-------|-------|
| Clinical feature  | 0   | 1                    | 2       | 3  | - X   | P     |
| Gender            |     |                      |         |    |       |       |
| Male              | 15  | 19                   | 6       | 4  | 3.728 | 0.140 |
| Female            | 8   | 18                   | 4       | 0  |       |       |
| Age $(t/a)$       |     |                      |         |    |       |       |
| ≥60               | 11  | 19                   | 3       | 3  | 1.549 | 0.682 |
| <60               | 12  | 18                   | 7       | 2  |       |       |
| Pathologic types  |     |                      |         |    |       |       |
| Squamous cell     | 7   | 13                   | 2       | 2  | 1.527 | 0.692 |
| Adeno             | 16  | 24                   | 8       | 2  |       |       |
| Ki-67             |     |                      |         |    |       |       |
| Ki-67≥5%          | 13  | 30                   | 6       | 4  | 3.563 | 0.198 |
| Ki-67<5%          | 9   | 7                    | 4       | 1  |       |       |
| Smoking           |     |                      |         |    |       |       |
| Yes               | 14  | 20                   | 6       | 0  | 4.975 | 0.079 |
| No                | 9   | 17                   | 4       | 4  |       |       |
| EGFR              |     |                      |         |    |       |       |
| Mutant            | 9   | 14                   | 5       | 2  | 0.883 | 0.887 |
| Wild              | 14  | 23                   | 5       | 2  |       |       |
| Stage             |     |                      |         |    |       |       |
| I+II              | 17  | 29                   | 4       | 1  | 8.841 | 0.033 |
| III+IV            | 6   | 8                    | 6       | 3  |       |       |
| Lymphatic metasta | sis |                      |         |    |       |       |
| N <sub>0</sub>    | 15  | 26                   | 6       | 0  | 7.134 | 0.031 |
| N <sub>1-3</sub>  | 8   | 11                   | 4       | 4  |       |       |
| Differentiation   |     |                      |         |    |       |       |
| High              | 8   | 7                    | 0       | 0  | 9.090 | 0.056 |
| Moderate          | 9   | 21                   | 7       | 1  |       |       |
| Low               | 6   | 9                    | 3       | 3  |       |       |

 NSCLC组织中PD-L1表达及CD8<sup>+</sup>T细胞浸润 与EGFR突变的相关性

NSCLC患者原发灶中PD-L1的表达与EGFR突 变状态有显著相关性(*r*=0.501,*P*=0.000),而肿瘤间 质中CD8<sup>+</sup>T细胞浸润与EGFR突变不相关(*r*=0.061, *P*=0.605)。

2.4 基于PD-L1表达及CD8<sup>+</sup>T细胞浸润的免疫微环 境分型分布与EGFR突变的相关性

74 例 NSCLC 免疫组织微环境分型的分布中 CD8<sup>+</sup> PD-L1<sup>+</sup>(I型)为36.5%、CD8<sup>-</sup> PD-L1<sup>-</sup>(II型)为 16.2%、CD8<sup>-</sup> PD-L1<sup>+</sup>(III型)为14.8%、CD8<sup>+</sup> PD-L1<sup>-</sup>(IV 型)为32.4%。免疫微环境分型在不同EGFR 突变、

 $\oplus$ 

吸烟史及病理分化程度的NSCLC组织中分布差异有 统计学意义(P<0.05),在不同性别、年龄、病理类型、 Ki-67、TNM分期及淋巴结转移NSCLC患者中的分

布差异无统计学意义(P>0.05,表4)。NSCLC组织免疫微环境分型与EGFR突变显著相关(r=0.244, P= 0.036)。

| Clinical facture     | $CD8^+ PD-L1^+(I)$ | CD8 <sup>-</sup> PD-L1 <sup>-</sup> (II) | CD8 <sup>-</sup> PD-L1 <sup>+</sup> (III) | CD8 <sup>+</sup> PD-L1 <sup>-</sup> (IV) | o. <sup>2</sup> | л     |
|----------------------|--------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-----------------|-------|
| Clinical leature     | ( <i>N</i> =27)    | (N=12)                                   | ( <i>N</i> =11)                           | ( <i>N</i> =24)                          | X               | P     |
| Gender               |                    |                                          |                                           |                                          |                 |       |
| Male                 | 18                 | 7                                        | 8                                         | 11                                       | 3.155           | 0.354 |
| Female               | 9                  | 5                                        | 3                                         | 13                                       |                 |       |
| Age $(t/a)$          |                    |                                          |                                           |                                          |                 |       |
| ≥60                  | 14                 | 5                                        | 6                                         | 10                                       | 0.985           | 0.821 |
| <60                  | 13                 | 7                                        | 5                                         | 14                                       |                 |       |
| Pathologic types     |                    |                                          |                                           |                                          |                 |       |
| Squamous cell        | 11                 | 2                                        | 5                                         | 6                                        | 3.571           | 0.285 |
| Adeno                | 16                 | 10                                       | 6                                         | 18                                       |                 |       |
| Ki-67                |                    |                                          |                                           |                                          |                 |       |
| Ki-67≥5%             | 22                 | 6                                        | 7                                         | 18                                       | 4.464           | 0.225 |
| Ki-67<5%             | 5                  | 6                                        | 4                                         | 6                                        |                 |       |
| Smoking              |                    |                                          |                                           |                                          |                 |       |
| Yes                  | 16                 | 2                                        | 7                                         | 9                                        | 8.044           | 0.035 |
| No                   | 11                 | 10                                       | 4                                         | 15                                       |                 |       |
| EGFR                 |                    |                                          |                                           |                                          |                 |       |
| Mutant               | 6                  | 8                                        | 1                                         | 15                                       | 16.328          | 0.001 |
| Wild                 | 21                 | 4                                        | 10                                        | 9                                        |                 |       |
| Stage                |                    |                                          |                                           |                                          |                 |       |
| I+II                 | 17                 | 11                                       | 6                                         | 17                                       | 4.523           | 0.164 |
| III+IV               | 10                 | 1                                        | 5                                         | 7                                        |                 |       |
| Lymphatic metastasis |                    |                                          |                                           |                                          |                 |       |
| $N_0$                | 16                 | 10                                       | 5                                         | 16                                       | 3.812           | 0.252 |
| N <sub>1-3</sub>     | 11                 | 2                                        | 6                                         | 8                                        |                 |       |
| Differentiation      |                    |                                          |                                           |                                          |                 |       |
| High                 | 3                  | 4                                        | 4                                         | 4                                        |                 |       |
| Moderate             | 15                 | 8                                        | 1                                         | 14                                       | 16.383          | 0.004 |
| Low                  | 9                  | 0                                        | 6                                         | 6                                        |                 |       |

| 表4 | NSCLC免疫微环境分型与临床病理特征关系(n) |
|----|--------------------------|
|    |                          |

2.5 NSCLC组织免疫微环境类型与患者生存状态的关系

本研究将患者随访截止时生存状态分为3种:无病生存,复发或转移,死亡。分析NSCLC患者治疗前免疫 微环境与随访生存状态的关系,结果发现:无病生存患 者以CD8\*PD-L1\*(I)免疫微环境比例最高(17/36),复 发转移患者以CD8 PD-L1 (II)比例最高(11/26),死亡 CD8<sup>+</sup> PD-L1<sup>+</sup>(I)占比最高(5/12);不同免疫微环境 类型的NSCLC患者生存状态的差异有统计学意义 (*P*<0.05,表5);NSCLC组织免疫微环境分型与患者 生存状态没有相关性(*r*=0.011,*P*=0.929)。

| 表5 免投微坏境分型与NSCLC患者生存状态的关系(n | 表5 | 表 | 表5 免疫 | 微环境分数 | 型与 NSCL | C患者生存 | 率状态的关系(n) |
|-----------------------------|----|---|-------|-------|---------|-------|-----------|
|-----------------------------|----|---|-------|-------|---------|-------|-----------|

Tab.5 Relationship between immune microenvironment classification and survival status of NSCLC patients (n)

| Survival status       | Ν  | CD8 <sup>+</sup> PD-L1 <sup>+</sup> (I) | CD8 <sup>-</sup> PD-L1 <sup>-</sup> (II) | CD8 <sup>-</sup> PD-L1 <sup>+</sup> (III) | CD8 <sup>+</sup> PD-L1 <sup>-</sup> (IV) | χ²     | Р     |
|-----------------------|----|-----------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|--------|-------|
| Disease free survival | 36 | 17                                      | 0                                        | 4                                         | 15                                       | 23.381 | 0.000 |
| Recurrence metastasis | 26 | 5                                       | 11                                       | 5                                         | 5                                        |        |       |
| Death                 | 12 | 5                                       | 1                                        | 2                                         | 4                                        |        |       |

 $\oplus$ 

· 299 ·

## 3 讨 论

目前,临床常用的免疫检查点抑制剂疗效预测生 物标记物有 PD-L1 和肿瘤突变负荷(tumor mutation burden,TMB)、微卫星不稳定(microsatellite instabilityhigh, MSI-H)等[7-8]。然而,这些生物标记物存在诸多不 足之处。首先,PD-L1是个动态变化性指标,受多种因 素影响。第一,放疗、某些化疗药物会导致肿瘤组织中 PD-L1 表达的上调[9-10];第二,PD-L1 检测平台及抗体众 多,无统一判读标准,多项关于免疫检查点抑制剂的临 床研究中PD-L1表达高低的截点不同[7,11]。如针对预测 nivolumab疗效而言,PD-L1阳性及高表达的截值为1% 和10%,而预测 pembrolizumab 的疗效, PD-L1 的阳性及 高表达截值分别为1%和50%。针对不同免疫检查点 抑制剂所取PD-L1截值的不同是临床中值得注意的问 题。另外,通过CheckMate-017研究<sup>[12]</sup>已知无论PD-L1 表达与否,鳞癌患者均可获益,从而证明PD-L1并不能 很好地预测nivolumab的疗效。TMB和MSI-H用于预 测免疫检查点抑制剂疗效也有其不足之处。首先,TMB 检测目前多采用高通量测序全外显子测序,价格较昂 贵、检测周期相对较长;MSI-H的检测方法虽经济简单, 但其在多数实体瘤中的发生率相对较低[13]。其在晚期 结直肠癌中发生率最高,只为10%左右;NSCLC患者中 MSI-H仅约2%<sup>[14]</sup>。如果单独选用MSI-H作为免疫检查 点抑制剂治疗的生物标记物,势必导致免疫获益人群 的遗漏。因此探索预测免疫检查点抑制剂疗效的生物 标记物对筛选获益人群有积极作用。

肿瘤的免疫微环境沉浸于各种免疫细胞中,涉 及众多的细胞、分子及信号通路15%。机体杀伤肿瘤细 胞的过程中,免疫微环境细胞中发挥最核心作用的 是 CD8<sup>+</sup>T 细胞<sup>[16]</sup>,其质和量关乎免疫治疗疗效<sup>[17]</sup>。 PD-1抑制剂治疗黑色素瘤的研究[18]发现,CD8+T细 胞数量与疗效相关。当前PD-1/PD-L1通路研究最 多,但PD-L1表达作为免疫检查点抑制剂疗效预测生 物标记物不够完美,可能的原因之一是未分析肿瘤 微环境中CD8⁺T细胞的浸润状态。当PD-1/PD-L1通 路被阻断时,被抑制的CD8<sup>+</sup>T细胞杀伤功能得以释 放,重新杀伤肿瘤细胞<sup>[19]</sup>;若原发性缺乏CD8<sup>+</sup>T细胞 时,即使PD-1/PD-L1通路被阻断,机体仍缺乏杀伤性 免疫细胞,也不会起到相应的疗效。联合检测肿瘤 组织中PD-L1表达及CD8<sup>+</sup>T细胞浸润,可能会更好 地预测免疫检查点抑制剂疗效<sup>[20-21]</sup>。基于 PD-L1 表 达及CD8⁺T细胞浸润的肿瘤免疫微环境分为四型: CD8<sup>+</sup> PD-L1<sup>+</sup>( I型,免疫耐受型)、CD8 PD-L1 ( II 型,免疫治疗无反应型)、CD8 PD-L1<sup>+</sup>(III型,原发诱 导表达型)、CD8<sup>+</sup> PD-L1<sup>-</sup>(Ⅳ型,其他通道逃逸型)。

本研究结果显示,NSCLC组织中免疫微环境以CD8+ PD-L1<sup>+</sup>(I型)最多见,CD8<sup>-</sup>PD-L1<sup>+</sup>(III型)最少见,这 与我国其他学者[22]的研究结果一致。另外,本研究发 现EGFR 突变型的免疫微环境分型分布有其特殊性, 其以 CD8<sup>-</sup> PD-L1<sup>-</sup>(II型)和(CD8<sup>+</sup> PD-L1<sup>-</sup>)(IV型)多 见,可见NSCLC患者EGFR突变与肿瘤微环境密切 相关,尤其是与肿瘤组织中PD-L1的低表达相关,这 可能是EGFR突变型NSCLC患者对免疫检查点抑制 剂治疗反应较差的机制之一。但 EGFR 突变对于肿 瘤组织中PD-L1表达的影响一直有争议,大多研究认 为EGFR基因突变下调肿瘤组织PD-L1表达[23-24]],这 与我们研究结果一致。但也有研究认为,EGFR基因 突变上调肿瘤组织中PD-L1表达[25]。分析原因,可能 与不同研究所取组织的时机不同有关。本研究所取 组织均为手术组织或确诊时的穿刺组织,因此可排 除化、放疗或靶向治疗等对PD-L1表达的影响因素。

本研究观察到不同分期的CD8\*T细胞浸润有明 显差异,并且分期越晚、CD8\*T细胞浸润越多。这可 能是由于晚期肿瘤释放较多肿瘤相关抗原,APCs能 更多识别并处理这些抗原,并将它们提呈给T细胞, 从而更多地激活细胞毒性T细胞<sup>[26-27]</sup>。本研究未观察 到肿瘤微环境中CD8\*T细胞在不同EGFR 突变状态 的NSCLC患者中浸润的差异,认为EGFR 突变与 CD8\*T细胞浸润无关。有研究<sup>[25,28]</sup>则认为,EGFR 突 变与肿瘤浸润淋巴细胞(tumor infiltrates lymphocytes,TILs)低有关。分析原因,可能是本研究入组患 者大多数为早期NSCLC患者,他们的免疫微环境中 CD8\*T细胞浸润较晚期少,并且本研究患者病例数有 限,可能影响结果分析。

本研究入组患者中位总生存期未到,缺乏患者 接受免疫检查点抑制剂治疗的相关数据,故暂不能 评估肿瘤免疫微环境对免疫检查点抑制剂疗效的预 测及NSCLC患者预后预测价值。但基于目前生存数 据可以初步看出,不同免疫微环境分型的NSCLC患 者无病生存、复发预后情况是有差异的,下一步将继 续随访患者,完善生存数据。鉴于 EGFR 突变型 NSCLC患者的免疫微环境分布的特殊性,应进一步 深化对这部分患者免疫微环境的研究,这对靶向药耐 药后NSCLC患者的治疗有相当重要的意义。

综上所述,EGFR 突变下调 PD-L1 的表达,对于 肿瘤微环境中 CD8<sup>+</sup>T 细胞浸润无影响;EGFR 突变状 态影响 NSCLC 患者肿瘤免疫微环境,分型NSCLC 患者 免疫微环境以CD8<sup>+</sup> PD-L1<sup>+</sup>(I型)为主,而 EGFR 突变 型 NSCLC 患者以CD8<sup>-</sup> PD-L1<sup>-</sup>(II型)为主;不同免疫微 环境患者的生存状态有明显差异,免疫微环境对NSCLC 患者预后的评估需更多临床研究进一步评估。

 $\oplus$ 

## [参 考 文 献]

- TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012
  [J]. CA Cancer J Clin, 2015, 65(2): 87-108. DOI: 10.3322/caac.21262.
- [2] GOIDSTRAW P, CHANSKY K, CROWLEY J, et al. The IASLC lung cancer staging project:proposals for revision of the TNM stage groupings in the forthcoming(eighth)edition of the TNM classification for lung cancer[J]. J Thorac Oncol, 2016, 11(1): 39-51. DOI: 10.1017/j.jtho.2015.09.009.
- [3] YANG J J,ZHANG X C,SU J,et al. Lung cancers with concomitant EGFR mutations and ALK rearrangements: receptors Phosphorylation[J]. Clin Cancer Res, 2014, 20(5): 1383-1392. DOI: 10.1158/ 1078-0432.CCR-13-0699.
- [4] MOK T S, WU Y, AHN M, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer[J]. N Engl J Med, 2017, 376(7): 629-640. DOI:10.1056/NEJMoa1612674.
- [5] GETTINGER S, RIZVI N A, CHOW L Q, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer[J]. J Clin Oncol, 2016, 34(25): 2980-2987. DOI: 10.1200/JCO. 2016.66.9929.
- [6] GAINOR J F,SHAW A T,SEQUIST L V,et al.EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis[J]. Clin Cancer Res, 2016, 22(18): 4585-4593. DOI: 10.1158/1078-0432.CCR-15-3101.
- [7] HERBST R S, BAAS P, KIM D W, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced nonsmall-cell lung cancer(KEYNOTE-010): a randomised controlled trial[J]. TheLancet, 2016, 387(10027): 1540-1550. DOI: 10.1016/ S0140-6736(15)01281-7.
- [8] SCHUMACHER T N, SCHREIBER R D. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348(6230): 69-74. DOI: 10.1126/ science.aaa4971.
- [9] TWYMAN-SAINT V C, RECH A J, MAITY A, et al. Radiation and dual checkpoint blookade activate non-redwndant imune mechanisms in cancer[J]. Nature, 2015, 520(7547): 373-377.
- [10] ANTONIA S J, VILLEGAS A, DANIEL D, et al.Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer[J]. N Engl J Med, 2017, 377(20): 1919-1929. DOI: 10.1056/NEJMoa1709937.
- [11] HORN L, SPIGEL D R, VOKES E E, et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase iii trials (checkmate 017 and checkmate 057)[J]. J Clin Oncol, 2017, 35(35): 3924-3933. DOI: 10.1200/JCO.2017.74.3062.
- [12] RECK M, TAYLOR F, PENROD J R, et al. Impact of nivolumab versus docetaxel on health-related quality of life and symptoms in patients with advanced squamous non-small cell lung cancer: results from the checkmate 017 study[J]. J Thorac Oncol, 2018, 3(2): 194-204. DOI: 10.1016/j.jtho.2017.10.029.
- [13] CHALMERS Z R, CONNELLY C F, FABRIZIO D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Med, 2017, 9(1): 34. DOI: 10.1186/ s13073-017-0424-2.
- [14] ZANG Y S, DAI C, XU X, et al. Comprehensive analysis of potential immunotherapy genomic biomarkers in 1000 Chinese patients with

cancer[J]. Cancer Med, 2019, 8(10): 4699-4708. DOI: 10.1002/ cam4.2381.

- [15] FRANKEL T, LANFRANCA M P, ZOU W. The role of tumor microenvironment in cancer immunotherapy[J]. Adv Exp Med Biol, 2017, 1036: 51-64. DOI: 10.1007/978-3-319-67577-0\_4.
- [16] HEGDE P S, KARANIKAS V, EVERS. The where, the when, and the how of immune monioring for cancer immunotherapes in the era of checkpoint inhibition[J]. Clin Cancer Res, 2016, 22(8): 1865-1874. DOI: 10.1158/1078-0432.
- [17] ShARMA P, HU L S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723. DOI: 10.1016/j.cell.
- [18] TUMEH P C, HARVIEW C L,YEARLEY J H, et al. PD-1 blockade induces responses by inhibing adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571. DOI: 10.1038/nature13954.
- [19] KRUMMEL M F, BARTUMEUS F, GERARDA. T cell migration, search strategies and mechanisms[J]. Nat Rev Immunol, 2016, 16 (3):193-201. DOI: 10.1038/nri.2015.16.
- [20] ENWERE E K, KORNAGA E N, DEAN M, et al. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer[J]. Med Pathol, 2017, 30 (4): 577-586. DOI: 10.1038/modpathol.2016.221.
- [21] GREENPLATE A R, JOHNSON D B, FERRELL P B, et al. Systems immune monitoring in cancer therapy[J]. Eur J Cancer, 2016, 61: 77-84. DOI: 10.1016/j.ejca.2016.03.085.
- [22] 吴鸿念,张琼,刘加夫,等. 非小细胞肺癌58例PD-L1和CD8的表达及临床意义[J]. 福建医学杂志, 2018, 40(1): 92-96. DOI:1002-2600(2018)01-0096-03.
- [23] TANG Y, FANG W, ZHANG Y, et al. The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs[J]. Oncotarget, 2015, 6(16): 14209-14219. DOI: 10.18632/oncotarget. 3694.
- [24] SOO R A, KIM H R, ASUNCION B R, et al. Significance of immune checkpoint proteins in EGFR-mutant non-small cell lung cancer[J]. Lung Cancer, 2017, 105: 17-22. DOI: 10.1016/j.lungcan.2017.01.008.
- [25] DONG Z Y, ZHANG J T, LIU S Y, et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer[J]. Oncoimmunology, 2017, 6(11): e1356145. DOI: 10.1080/2162402X.2017. 1356145.
- [26] MELERO I, BERMAN D M, AZNAR M A, et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer [J]. Nat Rev Cancer, 2015, 15(8): 457-472. DOI: 10.1038/nrc3973.
- [27] CHEN D S, MELLMAN I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1): 1-10. DOI: 10.1016/ j.immuni.2013.07.012.
- [28] MAZZASCHI G, MADEDDU D, FALCO A, et al. Low PD-1 expression in cytotoxic CD8<sup>+</sup> tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value[J]. Clin Cancer Res, 2018, 24(2): 407-419. DOI: 10.1158/1078-0432.

[收稿日期] 2019-11-28 [本文编辑] 韩丹 [俢回日期] 2020-02-20