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ABSTRACT 
 
Microorganisms, such as spanning bacteria, archaea and fungi, were ubiquitous and played pivotal roles in shaping 
ecosystems. This review offered a comprehensive investigation into the multifaceted strategies employed by 
microorganisms to thrive and adapt within complex ecological niches. Key themes explored in this review encompassed 
microbial defence mechanisms, biofilm formation, quorum sensing and altruistic behaviours. Microbial defence 
mechanisms were scrutinized, with a focus on bacteriocin production. Despite the costs associated with production, 
bacteriocins served as potent weapons that selectively targeted closely related strains, reducing competition and 
conferring indirect benefits to the producer's genetic kin. Biofilm formation, a critical facet of microbial survival, was 
discussed in detail. These structured microbial communities encased in self-secreted extracellular matrices provided 
structural support and protection, demonstrating their significance in diverse ecological contexts. The review further 
delved into the evolutionary implications of quorum sensing and altruism within microbial communities. Quorum sensing, 
a mechanism that allowed population density-dependent communication and cooperation, was revealed as essential for 
microbial survival. In conclusion, this review enhanced our understanding of the intricate strategies microorganisms 
employed for survival, adaptation and competition in intricate ecosystems. By shedding light on these mechanisms, it 
advanced our comprehension of microbial community dynamics and their indispensable roles in diverse environments. 
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INTRODUCTION 
 
Microorganisms engage in a constant struggle for survival 
within complex and naturally occurring ecosystems. 
Within these environments, they vie for access to limited 
resources, which can lead to either coexistence or 
domination over other organisms. Microbes also display 
social tendencies, forming alliances or rivalries as they 
establish various biological interactions within their 
respective habitats. Apart from these biological 
interactions, external factors like temperature, humidity, 
salinity and the availability of nutrients play a significant 
role in shaping the composition of microbial communities. 
As the population of microbes increases and resources 
become scarcer, they employ diverse strategies to secure 
the essential nutrients necessary for their sustenance. 

Ecosystems host intricate relationships among 
species, including microorganisms. Multispecies microbial 
communities are common in nature, fostering essential 
interactions through signalling molecules and physical 
contact. Bacteria may employ shared signal molecules to 
communicate, distinguishing neighbouring cells for 

cooperation or competition, often forming biofilms 
cooperatively. 

Competition between bacteria includes the production 
of soluble diffusible factors like bacteriocins and 
antibiotics. These substances, even at sub-inhibitory 
levels, facilitate cooperative interactions and signalling 
within and between species (Destoumieux-Garzón et al., 
2002; Davies et al., 2006). Quorum sensing, a cell-to-cell 
communication mechanism, was discovered through 
luminescence induction in Vibrio fischeri when grown in 
high-density culture medium. Acylated homoserine 
lactones serve as autoinducers in this process, but 
quorum sensing can be disrupted by quorum quenching 
and inhibitors (Fuqua et al., 1994; Dong et al., 2001; Uroz 
et al., 2005). Certain microbial growth-inhibitory 
mechanisms involve cell-to-cell contact. Escherichia coli 
employs a contact-dependent inhibition system utilizing 
proteins like CdiA and CdiB. The type VI secretion system 
(T6SS), similar in structure to bacteriophage puncturing 
devices, breaches bacterial cell walls to deliver effectors 
(Aoki et al., 2005; Nudleman et al., 2005; Benz et al., 
2012; Russell et al., 2014). This review discussed the 
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complex strategies utilized by microorganisms to survive, 
adapt and compete within intricate ecosystems. By 
illuminating these mechanisms, it has furthered our 
understanding of microbial community dynamics and their 
crucial contributions to various environments. 
 
Social behaviour of bacteria 
 
Aristotle once stated, "Human beings are inherently social 
creatures; an individual who lacks social inclinations by 
nature, rather than by chance, is either beneath our 
attention or transcends normal humanity." The study of 
social behaviour has long captivated biologists. However, 
it's important to recognize that social behaviours extend 
beyond humans; they are also observed in animals and 
plants, both within their own species and in interactions 
with others. Within the animal kingdom, common social 
behaviours encompass primate social hierarchies, 
communication through pheromones and competition 
among males for mating partners. Recent research has 
unveiled that plants possess the ability to distinguish 
between self and non-self, responding accordingly to 
different stimuli (Dudley and File, 2007). Clearly, social 
interactions permeate the realm of living organisms, even 
extending to bacteria. 

Prokaryotes, encompassing bacteria and archaea, are 
traditionally perceived as single-celled organisms. 
Nevertheless, they exhibit intriguing social behaviours, 
with variations across species due to distinct evolutionary 
pathways. These behaviours often involve cell-cell 
adhesion, division of labour and intercellular cooperation 
(Claessen et al., 2014; Lyons and Kolter, 2015). 
Remarkably, these behaviours are observed in organisms 
lacking neurons or nephrons, typically associated with 
complex social interactions. 

Prokaryotes, despite their structural simplicity and 
absence of cell differentiation, can display social 
behaviours akin to multicellular organisms with genuine 
multicellularity. This behaviour emerges from the 
differential expression of a common set of genes in 
response to diverse microenvironments, resulting in 
varied phenotypes within genetically identical cell 
populations. Stochastic fluctuations during gene 
regulation also contribute to cellular variability (Veening et 
al., 2008; van Vliet and Ackermann, 2015). 

Multicellularity offers clear benefits to bacterial 
populations. The division of labour enables specialized 
cell types to collaborate, facilitated by intercellular 
communication. This coordination leads to complex group 
behaviours that are synchronized, enhancing efficiency 
and overall functionality, ultimately ensuring better 
survival for the bacterial population (Aguilar et al., 2015). 

Social behaviours are categorized into four classes 
based on their effects: benefit, altruism, selfishness and 
spite (Hamilton, 1964; Hamilton, 1970). Mutualism 
benefits both the performer and recipient, while 
selfishness benefits the performer but harms the 
recipient. Altruism, on the other hand, benefits the 
recipient but not the performer, possibly resulting in harm 

to the performer. Spiteful interactions, though rare, harm 
both performer and recipient (Bashey et al., 2012). These 
classifications should consider long-term reproductive 
success; altruistic behaviours may not yield immediate 
benefits but could be advantageous over time. However, 
complexities arise as behaviours may have multiple 
outcomes and long-term consequences are challenging to 
measure. Thus, short-term effects often define behaviours 
due to uncertain long-term outcomes. 
 
Competition and cooperation in bacteria 
 
Microbes, owing to their diverse ecological niches, often 
find themselves in competition with other strains and 
species for limited resources and space. This competition 
has driven the evolution of various phenotypes aimed at 
outcompeting and displacing rival microbes. Interestingly, 
over time, competition has sometimes given way to 
cooperation, leading to the stable coexistence of 
microbes, even when they are genetically distinct. This 
shift in behaviour reflects the selection forces acting on 
different species or strains based on their specific 
ecological conditions. 

Bacterial interactions frequently involve the exchange 
of finite, shared public goods. These goods, typically 
compounds that demand energy and time to produce, 
become the focal point of bacterial cooperation and 
competition. Bacterial cells face a choice between 
competing for these resources or cooperating to 
maximize their availability. However, this cooperative 
strategy carries the risk of cheater cells, which exploit the 
common pool of public goods without contributing to the 
population's benefit. As cheaters invest nothing in this 
competition, they can grow over time, potentially 
dominating the population (Hamilton, 1964; Hibbing et al., 
2010; Ghoul and Mitri, 2016). 
 
Reason for competition 
 
Competition among microbial populations arises when 
they vie for limited resources within ecosystems, a 
phenomenon widely observed. Genomic investigations 
have unveiled the prevalence of competition-related 
elements, such as the type VI secretion system (T6SS) 
found in 25% of Gram-negative bacteria (Boyer et al., 
2009). Actinomycetes allocate a significant portion of their 
genetic repertoire (5-10%) to the production of secondary 
metabolites, including antibiotics, which are used in 
competitive interactions (Nett et al., 2009). 

Analyzing the extent of competition often involves 
constructing and simulating metabolic models based on 
sequence data. Freilich et al. (2011) pioneered this 
approach, revealing that competition is a dominant 
feature in mixed bacterial cultures, with relatively few 
instances of positive interactions. Experiments using 
bacterial isolates from tree-holes have validated these 
findings (Fiegna et al., 2015). Several conditions favor the 
prevalence of competition: (i) overlapping metabolic 
niches and resource requirements, (ii) spatial mixing of 
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different bacterial strains with intermingled nutrients and 
secretions, and (iii) the limitation of resources relative to 
the microbial population (Ghoul and Mitri, 2016). 

Environmental factors significantly influence these 
conditions. Complex nutrient structures with multiple 
resources or niches can reduce competition within 
populations, but resource ratio theory posits that an 
abundance of one resource may not preclude others from 
acting as limiting factors (Miller et al., 2005). Phylogenetic 
relationships among bacterial species in a community 
also contribute to resource niche differentiation, with 
distantly related species often coexisting due to 
differences in their resource needs (Hardin, 1960), 
although lateral gene transfer can eventually lead to niche 
overlap (Shapiro et al., 2012; Niehus et al., 2015). 

Spatial mixing depends on various factors, including 
nutrient availability and mechanical characteristics of the 
environment. Investigations with Pseudomonas 
aeruginosa have shown that nutrient levels influence 
spatial structuring of bacterial colonies (Mitri et al., 2016). 
However, spatial mixing often leads to a reduction in 
diversity over time, suggesting that competition intensifies 
as resources become depleted. Mechanical aspects, such 
as fluid dynamics and surface properties, also influence 
spatial organization (Persat et al., 2015). For instance, 
Cardinale (2011) demonstrated that a mixture of algae 
can cooperate to remove nitrate from stream water only 
under heterogeneous flow conditions; uniform flow results 
in competitive exclusion (Cardinale, 2011). 

Cell density can serve as a trigger for competitive 
behaviours. As bacterial cell density increases, 
physiological stress mounts due to nutrient depletion or 
cellular damage from competitive actions like bacteriocin 
secretion (Cornforth and Foster, 2013; LeRoux et al., 
2015a). In response to this stress, bacteria regulate 
competitive phenotypes to ensure survival. For example, 
P. aeruginosa forms protective biofilms upon detecting 
antibiotics (Oliveira et al., 2015) and deploys its T6SS 
when neighbouring cells are eliminated (LeRoux et al., 
2015b). Similar responses are observed in B. subtilis, 
which secretes lethal compounds upon detecting a 
Bacillus simplex biofilm in close proximity (Rosenberg et 
al., 2016). Soil bacteria can also modify competitive 
behaviours in response to neighbouring colonies by 
regulating antibiotic production (Abrudan et al., 2015; 
Kelsic et al., 2015). 
 
Consequences of competition over time 
 
Competition among microbial populations can lead to a 
reduction in local diversity and an increase in ecological 
stability (Allesina and Levine, 2011; Coyte et al., 2015). 
This competition can manifest in various ways, resulting 
in three possible outcomes: less competitive strains may 
be driven out, different strains may coexist by specializing 
in distinct metabolic niches and resource types, or they 
may split into different spatial niches within the 
environment. 

Niche differentiation is exemplified in the tree-hole 
microbial community evolution experiment, where initially 

competing bacterial species evolved to utilize each other's 
waste products, increasing overall productivity and 
reducing competition strength (Fiegna et al., 2015). 
Spatial separation, common on surfaces like mucus, soil, 
leaf surfaces or agar, allows different spatial niches to 
coexist as microbial populations slowly differentiate from 
a homogeneous competition to distinct spatial patterns 
(Hallatschek et al., 2007; Mitri et al., 2016). 

In microbial competition, three established outcomes 
exist: the dominance of more competitive strains, niche 
differentiation to reduce competition and spatial 
separation of strains. Recent scenarios propose 
additional dynamics. The Black Queen Hypothesis 
suggests stable coexistence within a niche, where one 
species produces essential public goods to avoid 
extinction, benefiting competitors (Morris et al., 2012; 
Morris, 2015). Similar dynamics occur in intraspecies 
cooperation and cheating, as observed in siderophores 
production and cyclic rock-paper-scissor interactions 
(Czárán et al., 2002; Narisawa et al., 2008). 

Strains in competition may engage in an arms race, 
favouring spatial differentiation (Czárán et al., 2002; Bucci 
et al., 2011; Biernaskie et al., 2013). Environmental 
conditions and competitive phenotypes influence stability 
and diversity (Schlatter and Kinkel, 2015). 

Warfare between two strains may be neutralized by 
other community members, as seen in antibiotic 
antagonism among producers (Abrudan et al., 2015). The 
equilibrium, where different antibiotic producers cancel 
each other's effects, may be short-lived as strains evolve 
for competitive advantage (Kelsic et al., 2015). Ultimately, 
competition tends to reduce diversity and increase 
ecological stability, influenced by environmental factors, 
but multiple outcomes can coexist within the same 
environment (Ghoul and Mitri, 2016). 
 
Cooperation 
 
Cooperation is a fundamental aspect of bacterial social 
behaviour, encompassing various activities that benefit 
individuals and their communities. This includes actions 
like dispersal, foraging, biofilm construction, reproduction, 
chemical warfare and signalling (Crespi, 2001). P. 
aeruginosa, for example, regulates 6 to 10% of its genes 
through cell-cell signalling, highlighting the importance of 
communication and cooperation (Schuster et al., 2003). 

Cooperative behaviours often involve the production 
of public goods, which can be exploited by cheaters-
individuals who benefit without contributing to production 
(West et al., 2006). This apparent paradox, where 
cooperation appears to defy the survival of the fittest, 
poses a significant challenge. The Tragedy of the 
Commons theory underscores the potential instability of 
cooperation, as individual selfishness can undermine 
collective benefits. Siderophores production in P. 
aeruginosa exemplifies this conflict, where cheaters 
exploit the costly siderophores produced by cooperators, 
gradually increasing in frequency and potentially 
outcompeting cooperators (Griffin et al., 2004). 
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Cooperation in bacterial populations can be 
categorized into two types: "whole group traits" and 
"others only traits" (Pepper, 2000). Whole group traits 
benefit the entire population, including producers, 
whereas others only traits involve co-operators sacrificing 
themselves for the benefit of others. Examples of whole 
group traits include the production of public goods that 
enhance resource utilization efficiency (Pfeiffer et al., 
2001; Kreft, 2004). Others only traits are exemplified by 
cellular slime molds and bacteria like Myxococcus 
xanthus forming fruiting bodies or undergoing autolysis to 
aid in nutrient sharing, sporulation and dispersal 
(Strassmann et al., 2000; Webb et al., 2003). 

The rationale for social cooperation in bacteria can be 
explained through direct and indirect fitness benefits. 
Direct benefits occur when cooperation directly enhances 
the fitness of the co-operator, often through mutual 
benefits or mechanisms that reward cooperation and 
punish cheating (Sachs et al., 2004). Indirect benefits, on 
the other hand, occur when cooperation benefits other 
individuals carrying the cooperative gene, often related 
through kin selection (Hamilton, 1964). Genetically related 
individuals may cooperate to pass down shared genes, 
facilitated by mechanisms like kin discrimination and 
limited dispersal (Hamilton, 1964). However, 
distinguishing between direct and indirect benefits can be 
complex, particularly in the case of whole group traits like 
siderophore production (Jansen and van Baalen, 2006). 
The key question is how such cooperative behaviour can 
remain stable in the presence of cheaters due to 
migration or mutation (West and Buckling, 2003). 
 
Kin selection 
 
Kin selection, initially introduced by Smith in 1964, 
elucidates how relatives collaborate in reproductive efforts 
to gain indirect fitness advantages. This concept 
encompasses two categorizations: a more stringent 
interpretation, where interactions are confined to 
individuals sharing a common genetic lineage and a 
broader interpretation encompassing interactions among 
individuals sharing a particular gene of interest, whether 
through ancestral connections or alternative mechanisms 
(Hamilton and Fox, 1975). Hamilton argued in favour of 
distinguishing general inclusive fitness from kinship 
effects, hence advocating for the narrower definition of kin 
selection (Hamilton and Fox, 1975). However, modern 
researchers predominantly prefer the broader term, as 
kinship usually underpins the rationale for achieving 
indirect fitness benefits. In contemporary scientific 
discourse, the broader interpretation of kin selection is the 
more commonly employed terminology due to its 
applicability in various scenarios involving shared genes 
or genetic relatedness (Jansen and van Baalen, 2006). 
 
Mutual benefit 
 
Mutualism is traditionally defined as a social behaviour 
that has fitness benefits on both the actor and the 
recipient (Hamilton, 1964; Lehmann and Keller, 2006). 

The term cooperation and mutualism are sometimes used 
interchangeably but this may cause confusions as 
mutualism is generally used to refer to specific 
interspecies cooperation (Brown, 1983; Herre et al., 1999; 
Foster and Wenseleers, 2006). The two terms describe 
two different ideas. Cooperation describes a simple 
mutually beneficial social behaviour between an actor and 
recipient which generally explains direct benefits. This 
does not explain the possibility of indirect benefits where 
such interaction may bring harm in the short term but 
benefits in long term (West et al., 2006). On the other 
hand, interspecific mutualism describes a bigger picture 
of the impact of each party on each other. While it is easy 
to explain how mutually beneficial interactions evolve, 
interspecific mutualism is a complex issue to address. 
Hence, the term mutual benefit is a more suitable 
description of a behaviour that is generally beneficial to 
both actor and recipient.  
 
Altruism 
 
Altruism, traditionally defined as selfless behaviour 
entailing costs to the actor while benefiting others, 
requires a more nuanced consideration. It should be 
evaluated based on long-term consequences and 
absolute fitness outcomes. For instance, if a cooperative 
behaviour incurs short-term costs but yields future 
benefits, it should be viewed as mutually beneficial rather 
than purely altruistic. Figure 1 summarised the 
mechanism of altruism. 

Reciprocal altruism, involving nonrelatives who take 
turns aiding each other, is not genuinely altruistic because 
it yields direct fitness advantages over time (Trivers, 
1971). It entails individuals investing in cooperation now 
to gain future benefits, making it mutually beneficial rather 
than purely altruistic. 

Altruism has been redefined based on the actor's 
fitness relative to other group members (Wilson, 1975; 
Colwell, 1981). Weak altruism describes behaviours that 
reduce the actor's fitness compared to other group 
members. Examples include public goods production, 
where actors bear costs but all group members, including 
the actors, benefit. This is often termed whole-group or 
group-beneficial traits (Pepper, 2000; Dugatkin et al., 
2003; Dugatkin et al., 2005). The altruistic or mutually 
beneficial nature of whole-group traits depends on cost-
benefit ratios and population structure. 

Defining altruism relative to the local group rather than 
the whole population poses challenges since natural 
selection acts on entire populations, not arbitrarily defined 
subsets. Assessing altruism within a group context 
ignores benefits that spread equally throughout the 
population. Traits benefiting the entire population are 
termed altruistic, although these benefits should not be 
overlooked. 
 
Microbial social behaviour – The biofilm 
 
Biofilms, common in microbial communities, have 
garnered extensive research attention due to their
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Figure 1: Altruistic cell death serves as a social interaction mechanism that amplifies collective stress resistance. (A) 
This diagram illustrates an abstract model of altruistic death, where cells succumb to environmental stress but, in the 
process, release a stress-relieving public good that benefits the survivors. (B) Real-life instances of this phenomenon 
include E. coli cells dying due to starvation, releasing metabolites that nourish the surviving cells. Adapted and modified 
from Carmona‐Fontaine and Xavier (2012). Figure was generated using BioRender software (https://biorender.com). 
 
ubiquity, impact on various processes and potential 
applications (Stewart, 2002; Davies, 2003). While biofilms 
can be problematic, they also offer benefits, including 
applications in wastewater treatment and biological fuel 
cells (Singh et al., 2006; Logan, 2009; Erable et al., 
2010). 

Biofilms typically represent surface-associated 
microbial communities enclosed within a self-produced 
extracellular matrix. Although their structures vary among 
species and even strains of the same species, certain 
fundamental characteristics are shared (Monds and 
O’Toole, 2009). All biofilms consist of an extracellular 
matrix comprising polysaccharide biopolymers, proteins 
and nucleic acids that bind cells together (Branda et al., 
2005). Biofilm development can also be influenced by 
growth conditions, substrates and culture medium. While 
single-species biofilms are theoretically clonal, they may 
exhibit genotypic similarity but phenotypic diversity due to 
differences in gene expression arising from shared gene 
compositions (Stewart and Franklin, 2008). Such cell 
differentiation is driven by various factors affecting gene 
expression. Figure 2 summarised the general biofilm 
process in bacteria. 
 

Biofilm in Gram-positive bacteria 
 
Bacillus subtilis serves as an excellent model for studying 
biofilm formation among Gram-positive organisms. Unlike 
Gram-negative bacteria, B. subtilis can undergo 
developmental processes leading to biofilm production. 
This process begins with the activation of matrix-secreting 
genes in response to external signals (Branda et al., 
2006). The extracellular matrix plays a crucial role in 
maintaining the structure and integrity of the biofilm 
(Marvasi et al., 2010). Initially, short, motile rod-shaped 
cells form extended chains of stationary cells, which 
adhere to each other and the surface through the 
secreted extracellular matrix as biofilms develop 
(Kobayashi, 2007). As differentiation occurs, the biofilm 
becomes heterogeneous, with various cell types 
dynamically localized within it (Vlamakis et al., 2008). This 
includes spores and motile cells, alongside matrix-
producing cells. However, cells can adapt their gene 
expression in response to different conditions, and lab-
generated biofilms have a limited lifespan, disintegrating 
in response to self-generated signals, allowing spore 
dispersion (Kolodkin-Gal et al., 2010). It's important to 
note that biofilm formation is not a prerequisite for 
sporulation (Branda et al., 2001; Hamon and Lazazzera, 
2001). 

https://biorender.com/
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Figure 2: General biofilm process in bacteria. Figure was generated using BioRender software (https://biorender.com).  
 

Biofilm formation in B. subtilis is regulated by multiple 
pathways due to its encounters with shifting soil 
microenvironments. The Spo0A pathway is the main 
regulator, influencing matrix production through the SinR-
SinI epigenetic switch and repressing the tapA and eps 
operons through AbrB (Chu et al., 2006). AbrB also 
represses matrix protein BslA and regulatory proteins 
SlrR and Abh (Chu et al., 2008; Verhamme et al., 2009). 
Dual control by SinR and AbrB allows Spo0A to fine-tune 
gene expression in response to changing conditions. 
Additionally, the DegU-DegS two-component system also 
plays a role in biofilm formation (Verhamme et al., 2007; 
Verhamme et al., 2009). 
 
Biofilm in Gram-negative bacteria 
 
E. coli and Salmonella, both Gram-negative bacteria, are 
also capable of forming biofilms and this process is linked 
to their pathogenicity. The initiation of biofilm formation in 
E. coli involves adhesion to a surface. While flagellar 
movement aids in motility and dispersal along the surface, 
it's noteworthy that non-motile E. coli strains can also 
form biofilms (Pratt and Kolter, 1999; Sheikh et al., 2001). 
Strong adhesion factors can replace motility during the 
initial attachment phase between the bacteria and the 
surface (Donlan, 2002). Initial attachment depends on 
physicochemical and electrostatic interactions (Dunne, 
2002), while permanent attachment in E. coli relies on 

structures such as type 1 fimbriae, curli and conjugative 
pili. Type 1 fimbriae adhere in a mannose-dependent 
manner to various surfaces (Duncan et al., 2005) and are 
essential for pathogenicity in E. coli (Kaper et al., 2004). 
Curli fimbriae also play a role by aiding attachment to 
extracellular matrix proteins during biofilm formation 
(Olsén et al., 1989). Finally, conjugative pili facilitate 
horizontal gene transfer, promoting biofilm formation and 
allowing E. coli to acquire essential genes from the 
environment or other E. coli strains (Reisner et al., 2006). 

Following secure attachment, E. coli undergoes 
maturation to construct a three-dimensional structured 
architecture, secreting surface proteins and extracellular 
matrix components. The type V secretion pathway 
facilitates the translocation of proteins into the 
extracellular medium, contributing to protein maturation 
(Henderson et al., 2004). E. coli employs numerous 
adhesins to promote colonization and biofilm maturation. 
While not directly involved in cell-to-surface adhesion, 
Antigen 43 (Ag43), a self-recognizing surface 
autotransporter protein, plays a key role in cell-to-cell 
adhesion, significantly impacting biofilm maturation 
(Kjaergaard et al., 2000a). Ag43 promotes cell-to-cell 
adhesion in liquid culture, resulting in auto aggregation, 
clump formation, sedimentation and ultimately biofilm 
formation (Schembri et al., 2003). Moreover, Ag43 
facilitates heterogeneous biofilm formation between 
different bacterial species, such as E. coli and P. 

https://biorender.com/
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aeruginosa (Kjaergaard et al., 2000a; 2000b). Ag43 is 
complemented by two adhesins, AidA and TibA, 
commonly found in pathogenic E. coli, further promoting 
aggregation and enhancing biofilm formation (Sherlock et 
al., 2005). Together, these three proteins, referred to as 
self-associating autotransporters (SAAT), collectively 
contribute to biofilm development (Klemm et al., 2006). 
Additionally, cell surface glycoconjugates, including 
lipopolysaccharide O antigen and capsular 
polysaccharide K antigen, are crucial in determining 
bacterial interactions with their environment and 
influencing biofilm formation (Beloin et al., 2008). 
Lipopolysaccharides (LPS), located on the outer 
membrane of Gram-negative bacteria, affect adhesion 
processes between bacteria and surfaces, while E. coli 
capsules also play a significant role in biofilm formation by 
influencing adhesion processes (Beloin et al., 2006). 

E. coli biofilms, like those of B. subtilis, consist of 
matrix polysaccharides, proteins, nucleic acids, 
lipids/phospholipids, nutrients and metabolites (O’Toole 
and Ghannoum, 2004). Matrix polysaccharides offer 
structural support and protection to the biofilm. Three 
crucial exopolysaccharides in E. coli biofilm formation are 
β-1,6-N-acetyl-D-glucosamine polymer (PGA), colanic 
acid and cellulose (Danese et al., 2000; Agladze et al., 
2005; Uhlich et al., 2006). Biofilm formation in E. coli is 
highly regulated. The cpxRA system detects 
environmental changes and responds to envelope stress, 
promoting early adaptation to stresses and modulating 
flagellar gene expression (De Wulf et al., 2002). This 
system also senses abiotic surfaces and neighboring 
bacteria, contributing to biofilm maturation by modulating 
cell-to-cell adhesion (Beloin et al., 2004). The 
EnvZ/OmpR two-component pathway, in collaboration 
with the CpxRA system, senses surface osmolarity, a 
significant driver of biofilm formation on abiotic surfaces, 
leading to increased surface adhesion and curli 
expression (Jubelin et al., 2005). Additionally, the Rcs 
two-component system, including membrane proteins 
RcsC and RcsD and response regulator RcsB, plays a 
crucial role in bacterial surface remodelling and biofilm 
maturation in response to various signals (Majdalani and 
Gottesman, 2005). 
 
Biofilm as a social interaction 
 
Biofilm formation can be regarded as a form of social 
interaction, necessitating communication and cooperation 
among closely situated individuals for development and 
survival. Within a biofilm, cellular specialization can occur, 
Boles et al. (2004) successfully identified phenotypically 
distinct cell variants in a wrinkly P. aeruginosa biofilm, 
demonstrating different behaviours such as faster biofilm 
formation and greater stress resistance. The secretion of 
the extracellular matrix is a collaborative effort to provide 
protection against environmental factors or predation, 
either by expanding the biofilm or through chemical 
defences (Matz and Kjelleberg, 2005). 

Furthermore, the secretion of various public goods 
essential for biofilm formation, including rhamnolipids, 

biosurfactants, macro vesicles containing signalling 
molecules and proteases, is an outcome of social 
behaviour (West et al., 2006). Cell death can contribute to 
the entire community by providing nutrients and beneficial 
genes, either through cooperative self-sacrifice or 
competitive elimination (Webb et al., 2003). Biofilm 
dispersal may also result from social behaviour to reduce 
competition with non-dispersing relatives. Quorum 
sensing plays a vital role in the coordinated effort of 
biofilm formation, as evidenced by the inability of quorum 
sensing-deficient cells to effectively develop a mature 
biofilm (Davies et al., 1998). 
 
Quorum sensing as a social interaction 
 
Quorum sensing was initially characterized in luminescent 
marine bacteria, specifically V. fischeri and V. harveyi 
(Nealson and Hastings, 1979). In these bacteria, 
bioluminescence, mediated by the luciferase enzyme 
luxCDABE, is triggered when cell population density 
reaches a threshold due to the accumulation of 
autoinducer signalling molecules (Miyamoto et al., 1988). 
Quorum sensing is a widespread phenomenon in the 
bacterial world, with examples including Streptomyces 
spp. coordinating antibiotic production, Enterococcus 
faecalis using it for conjugation, and Myxococcus xanthus 
employing it in fruiting body development (Dworkin and 
Kaiser, 1985). 

Bacteria engage in cell-to-cell communication through 
the secretion of chemical molecules to coordinate 
communal behaviours. A diverse range of chemicals and 
signalling molecules has been identified, and many 
bacteria can employ multiple signal types for 
communication. Bacteria have evolved intricate 
hierarchical regulatory networks to integrate and process 
sensory information, allowing them to differentiate 
between species within heterogeneous populations. Such 
intra- and inter-species communication is vital for 
bacterial survival in their natural habitats. 

The evolutionary significance of quorum sensing is a 
compelling but often overlooked subject. Microbiologists 
typically assume that quorum sensing is readily favoured 
by natural selection because of its positive effects on the 
entire population (Henke and Bassler, 2004). However, 
evolutionary theory offers an alternative viewpoint, 
considering quorum sensing as a mode of communication 
and cooperation. 
 
Bacteriocin secretion 
 
Microbes utilize a diverse range of defence mechanisms, 
which include traditional broad-spectrum antibiotics, 
bacteriocins, metabolic by-products, lytic substances and 
various protein exotoxins (James et al., 2013). Unlike 
classical antibiotics, bacteriocins have a relatively narrow 
spectrum of activity, targeting only bacteria closely related 
to the producing strain. Bacteriocins are produced by the 
majority of bacteria and, more recently, have been found 
in Archaea as well (Torreblanca et al., 1994). 
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Bacteriocin in Gram-negative bacteria 
 
The bacteriocin family includes a diverse group of 
proteins that vary in size, target microorganisms, mode of 
action and immunity mechanisms. Among them, colicins 
produced by E. coli have been extensively studied. 
Colicin gene clusters are typically found on plasmids and 
typically consist of a colicin-encoding gene, a specific 
immunity-conferring gene and a lysis gene responsible for 
colicin release through cell lysis (James et al., 1996). The 
production of colicins is mediated by the SOS regulon 
under stressful conditions and these toxins are lethal to 
both the producing cell and neighbouring cells recognized 
by colicins. Colicins recognize their targets through the 
interaction between specific colicin protein domains and 
cell surface receptors, limiting their killing range to 
phylogenetically related strains. Colicins employ various 
mechanisms, including pore formation in the cell 
membrane and nuclease activity against DNA, rRNA and 
tRNA targets. 

It's worth noting that while colicins are classical Gram-
negative bacteriocins, they can vary within subgroups of 
this family. In E. coli, bacteriocin genes are exclusively 
found on plasmids, while nuclease pyocins in P. 
aeruginosa are exclusively encoded on the chromosome. 
Nuclease pyocins share sequence similarity with E. coli 
colicins but remain uncharacterized. Additionally, genes 
encoding bacteriocins in Serratia marcesens, closely 
related to the colicin family, are located on both plasmids 
and chromosomes (Enfedaque et al., 1996). 

In general, bacteriocins isolated from Gram-negative 
bacteria often result from recombination between existing 
bacteriocins, facilitated by the domain structure of 
bacteriocin proteins (Lau et al., 1992). The central 
domain, comprising approximately 50% of the colicin 
protein, is responsible for recognizing specific cell-surface 
receptors. The N-terminal domain, making up roughly 
25% of the protein, is typically involved in translocating 
the protein into the target cell. The remaining portion of 
the protein contains the killing domain and a short 
immunity region for binding to an immunity protein. 
Notably, pyocins from P. aeruginosa have a reversed 
order of the translocation and receptor recognition 
domains but share a similar overall domain structure 
(Sano et al., 1993). 
 
Bacteriocin in Gram-positive bacteria 
 
Gram-positive bacteria produce a wider variety and higher 
abundance of bacteriocins compared to Gram-negative 
bacteria. Unlike Gram-negative bacteriocins, Gram-
positive bacteriocins may not be lethal to producer cells. 
They have a dedicated bacteriocin-specific regulation 
network and a transport mechanism that includes sec-
dependent pathways. 

The majority of bacteriocins are produced by lactic 
acid bacteria (LAB) and can be categorized into three 
classes (Klaenhammer, 1988). Class I bacteriocins are 
known as lantibiotics, characterized by post-translational 
modifications involving amino acids such as lanthionine 

and B-methyllanthionine (Guder et al., 2000). Lantibiotics 
can be further divided into subgroups A and B based on 
their structural features and mode of killing (Jung and 
Sahl, 1991). Type A lantibiotics, like Nisin, are larger and 
depolarize the target cell's cytoplasmic membrane 
(Schüller et al., 1989). Type B lantibiotics, such as 
mersacidin, disrupt cell wall biosynthesis and are 
generally smaller with a globular secondary structure, 
functioning through enzyme inhibition (Brötz et al., 1995). 

Class II LAB bacteriocins are small, heat-resistant 
peptides that lack lanthionine modifications (Jung and 
Sahl, 1991). They are further categorized into Class IIa 
and Class IIb. Class IIa bacteriocins share a conserved 
amino-terminal sequence (YGNGVXaaC) and are known 
for their activity against Listeria, functioning by forming 
pores in the cytoplasmic membrane of target cells 
(Hastings et al., 1991). Class IIb bacteriocins also form 
pores in target cell membranes but are composed of two 
different proteins (Nissen-Meyer et al., 1992). Recently, a 
third subgroup of Class II bacteriocins has been proposed 
to include sec-dependent bacteriocins like acidocin B 
(Leer et al., 1995). 

Class III LAB bacteriocins are large, heat-sensitive 
proteins, such as helveticins J and V, and lactacin B 
(Vaughan et al., 1992). A more recent Class IV LAB 
bacteriocin classification includes bacteriocins that require 
lipid or carbohydrate moieties, like leuconocin S and 
lactocin 27 (Bruno and Montville, 1993). 

Gram-positive bacteriocins typically require a greater 
number of genes for their production compared to Gram-
negative bacteriocins. For instance, the nisin gene cluster 
includes genes for a precursor peptide, modification 
enzymes, leader peptide cleavage protein, secretion, 
immunity and expression regulation (Engelke et al., 
1994). These gene clusters are predominantly found on 
plasmids but can also be located on chromosomes or 
transposons (Dodd et al., 1990). 

It has traditionally been believed that Gram-positive 
bacteriocins primarily target other Gram-positive bacteria. 
For example, lactococcins A, B and M specifically kill 
Lactococcus (Mota-Meira et al., 2000). In contrast, type A 
lantibiotics like nisin A and mutacin B-Ny266 have 
demonstrated activity against a wide range of organisms, 
including Gram-positive species like Actinomyces, 
Bacillus, Clostridium, Corynebacterium, Enterococcus, 
Gardnerella, Lactococcus, Listeria, Micrococcus, 
Mycobacterium, Propionibacterium, Streptococcus and 
Staphylococcus, as well as medically important Gram-
negative bacteria like Campylobacter, Haemophilus, 
Helicobacter and Neisseria (Ross et al., 1999). 

The production of Gram-positive bacteriocins usually 
occurs during the transition from the logarithmic growth 
phase to the early stationary phase. For instance, nisin 
production typically takes place between the mid-log 
phase and early stationary phase (Buchman et al., 1988). 
However, this production pattern is not solely dependent 
on the cell cycle but is rather influenced by cell population 
density. Nisin A, for example, can regulate its own 
expression by acting as a quorum sensing signalling 
molecule, impacting its two-component systems nisR and 
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nisK, which consist of a response regulator and a sensor 
kinase, respectively (Chung et al., 1989). Remarkably, 
nisin transcription can be controlled by adding nisin to the 
culture medium, with transcription levels directly 
correlating with the amount of nisin added (Kuipers et al., 
1995). 
 
Bacteriocin and social interaction 
 
The production of bacteriocins can be seen as a 
potentially antagonistic interaction, involving costs for 
both producers and recipients (Gardner et al., 2004). 
Producers may face the expense of diverting resources 
from other cellular functions to support bacteriocin 
production. In the case of Gram-negative bacteria, cell 
death is a necessary step for the release of bacteriocins 
(Mader et al., 2015). However, it's important to note that 
bacteriocin production can indirectly benefit the relatives 
of the producer cell. Since relatives are shielded from the 
harmful effects of bacteriocins, only unrelated competitors 
will be eliminated, thereby reducing the intensity of 
competition experienced by relatives. Consequently, 
bacteriocin production can also be seen as a form of 
indirect altruism. The extent of bacteriocin production may 
be influenced by the degree of genetic relatedness 
among individuals (Gardner et al., 2004). Optimal 
bacteriocin production is likely to be favoured when 
genetic relatedness is at an intermediate level, as there 
are fewer relatives to enjoy the advantages of reduced 
competition. Conversely, if genetic relatedness is high, 
bacteriocin production may be reduced because there are 
fewer competitors to target. 
 
CONCLUSION 
 
In conclusion, this review delves into the fascinating world 
of microbial interactions, focusing on various aspects of 
bacteriocins and biofilm formation. Bacteriocins, produced 
by both Gram-negative and Gram-positive bacteria, 
represent a diverse array of antimicrobial peptides and 
proteins that play essential roles in microbial competition 
and survival. While Gram-negative bacteriocins, such as 
colicins, tend to have a narrow killing range and are often 
associated with plasmids, Gram-positive bacteriocins 
exhibit greater diversity and are typically regulated by 
dedicated systems. These bacteriocins may not always 
be lethal to producer cells and can have broader target 
ranges. 

On the other hand, biofilm formation is a complex 
process involving microbial communities that cooperate 
and communicate effectively. Biofilms are structured 
communities encased in an extracellular matrix that 
provide protection and facilitate survival in various 
environments. Microbes within biofilms display 
cooperative behaviours, such as the secretion of public 
goods, which benefit the entire community. Quorum 
sensing, a form of bacterial communication, plays a 
pivotal role in coordinating these social behaviours within 
biofilms. 

Furthermore, the study highlights the intricate balance 
between competition and cooperation in microbial 
communities. Bacteriocin production can be seen as a 
form of spiteful interaction, incurring costs for both 
producers and recipients, but also providing indirect 
benefits to relatives by reducing competition with non-
relatives. This dynamic interplay between competition, 
cooperation, and communication is essential for 
understanding the survival and adaptation of 
microorganisms in their natural habitats. 

Overall, this study sheds light on the multifaceted 
strategies employed by microorganisms to thrive and 
adapt in complex ecological niches. It underscores the 
importance of considering both the individual and 
collective behaviours of microbes when studying their 
interactions and ecological roles. 
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