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ABSTRACT 
 
Aims: Lactic acid bacteria (LAB) biofilms constitute one of the most remarkable breakthroughs in the field of food 
biopreservatives and can be employed to prevent foodborne disease. The purposes of this study were to investigate the 
efficacy of inhibitory LAB biofilms against foodborne pathogens and evaluate their tolerance to acidic pH and bile salts, 
as well as their physicochemical properties. 
Methodology and results: Four strains of Lactobacillus brevis biofilms isolated from kimchi showed antipathogenic 
activity to the bacteria Staphylococcus aureus FNCC 0049 and Escherichia coli FNCC 0091. These biofilms were also 
tolerant to pH 2.5, 0.3% bile salt and strong adhesion. Two of the four L. brevis biofilms (L. brevis biofilm KA2 and KB1) 
produced the highest inhibitory activity against both pathogenic bacterial indicators, tolerance to acidic pH and bile salts, 
and the strongest adhesion. In addition, based on Scanning Electron Microscope-Energy Dispersion X-ray Spectroscopy 
(SEM-EDS) analysis, both biofilm strains had a smooth surface texture; the cell morphology was rod-shaped and 
consisted of several elements such as carbon, oxygen and nitrogen, which was built up of extracellular polymeric 
substances (EPS). 
Conclusion, significance and impact of study: The presence of EPS as a constituent of LAB biofilms influenced their 
survival abilities in an acidic pH and bile salt environment. As a result, the characteristics of L. brevis biofilm KA2 and 
KB1 made them excellent candidates for use as antimicrobial packaging systems in food biopreservative applications. 
 
Keywords: Foodborne disease, pathogenic bacteria, adhesion, SEM-EDS, rod-shaped 
 

INTRODUCTION 
 
Foods contaminated with pathogenic microbes have 
recently caused many cases of foodborne disease in 
Indonesia. Based on a Badan Pengawas Obat dan 
Makanan (BPOM) report (2019), approximately 61% of 
the microbes detected in several food products were 
pathogenic. Two bacterial species, Escherichia coli and 
Staphylococcus aureus have been confirmed as the 
dominant pathogenic microorganisms in food products 
(Bundidamorn et al., 2018; Incili et al., 2019; Qi et al., 
2021; Wang et al., 2021b). These infections cause 
several poisoning symptoms, such as diarrhea, fever, 
nausea, vomiting and occasionally even death. These 
symptoms are associated with virulence factors in both 
pathogenic bacterial species. 

Escherichia coli comprises five virulence classes, 
including enterohemorrhagic E. coli, enteropathogenic E. 
coli (EPEC), enterotoxigenic E. coli (ETEC), 

enteroaggregative E. coli (EAEC) and enteroinvasive E. 
coli (EIEC) (Mirhoseini et al., 2018; Ali et al., 2020), 
whereas S. aureus encompasses only three, including 
leucocidin, toxic shock syndrome toxin-1 (TSST-1) and 
Staphylococcal enterotoxins (SEA, SEB, SEC, SED, SEE, 
SEG, SHE, SEI). Due to the different modes of virulence, 
the two pathogens cause numerous foodborne disease 
symptoms (Fang et al., 2020; Zhao et al., 2020). 

Chemical preservatives can be applied to lower the 
risk of foodborne disease; however, such preservatives 
cause major health problems such as allergy, asthma, 
hypersensitivity, hyperactivity, neurological damage and 
cancer (Abd-Elhakim et al., 2020; Balram et al., 2021; 
Huang et al., 2021). Therefore, biopreservatives based on 
lactic acid bacteria (LAB) biofilms have gotten a lot of 
interest in the last few years. 

In general, LAB Biofilms are recognized as safe by the 
US-FDA and are considered an alternative 
biopreservative with beneficial properties. These biofilms 
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are not toxic to eukaryotic cells and only inhibit spoilage 
microbes and food pathogens in small concentrations. In 
addition, they can be used as probiotics that are tolerant 
to acidic pH and bile salts; consequently, they can 
colonize the guts of animals and humans (Mohamad et 
al., 2020; Ashaolu and Fernández-Tomé, 2021). The use 
of LAB biofilms as food preservatives also does not alter 
food quality (Ghanbari et al., 2013; Johansen and 
Jespersen, 2017). 

Biofilms are microorganism communities that are 
spatially structured in an extracellular polymeric 
substance (EPS) that is mostly made up of 
exopolysaccharides, lipids, proteins and extracellular 
DNA (eDNA) (Muruzović et al., 2018). The formation of 
biofilms can be seen as a mode of growth that protects 
cells, thus enabling them to thrive in unfavorable 
surroundings such as the presence of antagonistic 
microorganisms (Aoudia et al., 2016; Retnaningrum and 
Wilopo, 2016; Retnaningrum and Wilopo, 2017; Sun et 
al., 2020). Hence, most LAB biofilms exhibit high 
inhibitory effects against both spoilage and pathogenic 
microorganisms (Kumar et al., 2017; Sasikumar et al., 
2017; Trabelsi et al., 2017; Rani et al., 2018). 

The application of LAB biofilms in food preservatives 
is highly dependent on their physicochemical 
characteristics, which are affected by the type of LAB, 
availability of nutrients and environmental conditions, 
including pH and temperature (Margalho et al., 2021). 
Previous research has isolated and identified four strains 
of Lactobacillus brevis from local kimchi in Indonesia, 
which produced biofilm in de Man Rogosa Sharpe (MRS) 
broth medium (Sapalina and Retnaningrum, 2020). 
Therefore, to develop a green food biopreservative, it is 
important to further evaluate the inhibitory effect of 
biofilms against foodborne pathogens, to analyze their 
tolerance to acidic pH and bile salt and to investigate their 
physicochemical characteristics. 
 
MATERIALS AND METHODS 
 
LAB biofilms, pathogenic bacteria indicator and 
medium 
 
Four L. brevis strains (L. brevis KA2, L. brevis KA5, L. 
brevis KB1 and L. brevis KC4) used in this research were 
isolated from local kimchi which purchased from an 
Indonesian market (Sapalina and Retnaningrum, 2020). 
Routinely, these strains were cultured in de MRS broth 
medium (Himedia) at pH 6.5, 37 °C. The formation of 
biofilms was investigated by culturing the bacteria in 
nutrient broth (NB) medium (Himedia) at 37 °C, pH 6.5 
containing zeolites for biofilm attachment. Staphylococcus 
aureus FNCC 0047 and Escherichia coli FNCC 0091 as a 
foodborne disease indicator (Food and Nutrition Culture 
Collection, 2020) were cultivated at 37 °C in NB medium 
(Himedia) at pH 6.5. 
 
 
 
 

Lactobacillus brevis strains and growth conditions 
 
The accession numbers for the 16S rDNA sequences of 
four L. brevis strains (L. brevis KA2, L. brevis KA5, L. 
brevis KB1 and L. brevis KC4) are OK083725, 
OK086760, OK083727 and OK086762, respectively 
(https://www.ncbi.nlm.nih.gov). On a phylogenetic tree 
constructed with several comparative sequences of 
biofilm-producing LAB species, the four isolates were 
grouped and closely related to strains of L. brevis 
(Sapalina and Retnaningrum, 2020). These strains were 
cultivated in MRS broth and incubated for 24 h at 37 °C. 
 
Measurement of the inhibitory effect of L. brevis 
biofilms against pathogenic bacteria 
 
The biofilms of four LAB were evaluated for their ability to 
stop the spread of two pathogenic bacteria (S. aureus 
FNCC 0047 and E. coli FNCC 0091) by following the 
method of Gómez et al. (2016) with minor modifications. 
A 1 µL bacterial biofilm with a number of 107-108 CFU/mL, 
which was equivalent to a bacterial turbidity of 0.25 ± 0.05 
was added to a 96-well microplate (Iwaki AGC Techno 
Glass Co., Ltd., Japan) containing 100 μL MRS broth and 
cultured at 30 °C for 48 h. After formation of biofilms at 
the bottom of the wells, the plate was washed with 0.85% 
NaCl (w/v) to remove planktonic cells. A 100 µL aliquot of 
a pathogenic bacterial suspension with a number of 107-
108 CFU/mL, which was equivalent to a bacterial turbidity 
of 0.25 ± 0.05 was placed into the well and incubated for 
72 h at 30 °C. Every 24 h, half of the medium in the well 
was replaced with new medium. To evaluate the number 
of viable cells of pathogenic bacteria that survived 
inhibition by LAB biofilm, their pathogenic bacterial culture 
were transferred into a sterile microtube, then serially 
diluted tenfold and poured on an agar plate containing 
nutrient agar (NA). After incubation for 24 h at 30 °C, the 
pathogenic bacterial colonies were observed and their 
number determined and expressed as CFU/mL. 
 
Assay for tolerance of L. brevis biofilms to acidic pH 
and bile salts 
 
Tolerance of L. brevis biofilms to acidic pH and bile salts 
was determined by measuring their survival at pH 2.5 and 
0.3% (w/v) bile salt when incubated for 4 h at 37 °C 
(Tokatlı et al., 2015). Previously, four strains of L. brevis 
biofilms were cultured in MRS broth and incubated for 24 
h at 37 °C. The cell pellet was obtained by centrifuging 
the culture samples at 6000× g for 15 min, suspended in 
sterile phosphate buffered saline containing (g/L) 9 
Na2HPO4·2H2O, 9 NaCl and 1.5 KH2PO4, and diluted to a 
concentration of 109 CFU/mL, which was determined 
using the plate count method. To assay the tolerance of 
L. brevis biofilms to acidic pH, the suspensions were 
incubated at pH 2.5 and 37 °C for 4 h, whereas to assay 
the resistance of L. brevis biofilms to bile salt, 0.3% (w/v) 
bile salt was added to the suspensions and the mixtures 
were then incubated for 4 h at 37 °C. Finally, the 

https://www.ncbi.nlm.nih.gov/
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percentage of bacterial cell survival was determined 
according to equation 1. 
 
% survival = Nt/N0 × 100 ………………………………... (1) 
 
where N0: The number of viable bacteria biofilm at 0 h 
(CFU/mL); Nt: The number of viable bacteria biofilm at 4 h 
(CFU/mL) 
 
Analysis of physicochemical characters of L. brevis 
biofilms 
 
The physicochemical characters of LAB biofilms were 
investigated based on their adhesion, texture and 
chemical composition. The textures and chemical 
compositions were analyzed by Scanning Electron 
Microscope-Energy Dispersion X-ray Spectroscopy 
(SEM-EDS), whereas the adhesion of LAB biofilms was 
investigated by observing the adhesion strength of the 
biofilm on the zeolite surface. 

The bacterial culture suspension was previously 
prepared by transferring the colonies from agar plates into 
9 mL of MRS broth medium in 25 mL Erlenmeyer flasks 
and incubating them at 37 °C for 24 h. These initial 
cultures were subsequently diluted into fresh sterile MRS 
broth media at a bacterial number of 107-108 CFU/mL, 
which was equivalent to a bacterial turbidity of 0.25 ± 0.05 
on a 600 nm wavelength spectrophotometer 
measurement. A bacterial suspension of 3 mL was then 
inoculated into 100 mL fresh sterile MRS broth medium 
containing 10 g of zeolite with a diameter of 0.4 to 0.6 cm 
(Retnaningrum and Wilopo, 2017). After incubation for 48 
h at 37 °C, biofilm that attached on the zeolite surfaces 
was observed in an adhesion test by vortex treatment 
(Genie 2, Scientific Industries) at speeds of 600, 1200 
and 1800 rpm for 20 sec (Siradje et al., 2017). 
Subsequently, optical density was measured using a 
spectrophotometer (Thermo Scientific) with a 600 nm 
wavelength. The percentage of viable cell bacteria 
released after vortex treatments was determined by the 
pour plate method in NA. 
 
Scanning electron microscope-energy dispersion X-
ray spectroscopy (SEM-EDS) analysis of LAB biofilms 
 
The texture and chemical composition of L. brevis LAB 
biofilm that produced the highest inhibitory effect against 
pathogenic bacteria indicators, tolerance to acidic pH and 
bile salts, and strongest adhesion was further observed 
using Scanning Electron Microscope-Energy Dispersion 
X-ray Spectroscopy (SEM-EDS) (JEOL JSM-T300). A 3 
mL aliquot of the selected bacterial suspension (107-108 
CFU/mL) was inoculated into an Erlenmeyer flask 
containing 30 mL MRS broth medium and a glass cover 
slip. After 48 h of incubation at 37 °C, biofilm formed and 
attached itself to the surface of the glass cover slip. The 
broth was then removed, and the biofilms on the glass 
cover slips were rinsed twice in 100 mM phosphate buffer 
(pH 7.4) for 1 h at room temperature. The biofilms were 
then fixed for 24 h at room temperature in 0.5 mL 2.5% 

glutaraldehyde and 100 mM phosphate buffer (pH 7.4). 
The fixed biofilms were subsequently dehydrated using a 
graded ethanol series, which included 30 min at 50%, 
70%, 80%, 90%, 95% and 100% ethanol, followed by 3 h 
in t-butyl alcohol. The dehydrated biofilms were then 
sputter-coated with gold/palladium after freeze drying. 
The biofilm was then attached to the cover slip and dried 
for 30 min. The coating process was carried out using 
platinum elements. The surface texture of the biofilm was 
observed by SEM to determine its morphological and 
topographic characteristics. The elements or chemical 
characteristics of the biofilm were analyzed by EDS. 
 
Statistical analysis 
 
All of the data is given as a three-replicate mean and 
standard deviation. Analysis of variance was used to 
establish treatment effects and Duncan's multiple range 
test was used to determine significant differences. 
Statistical significance was defined as a difference of 
p<0.05.  
 
RESULTS AND DISCUSSION 
 
Inhibitory effect of L. brevis biofilms against 
pathogenic bacteria 
 
The inhibitory effect and superiority of LAB biofilms 
against pathogenic bacteria are an important 
characteristic for the development of biopreservation 
agents. The inhibitory effect of L. brevis biofilms against 
S. aureus can be shown from the growth profile of S. 
aureus in the exposure of their biofilms compared with a 
control (without addition of L. brevis biofilms) (Figure 1). 
The growth of S. aureus exposed to L. brevis biofilm was 
lower than that of the control, showing that L. brevis 
biofilms could inhibit the growth of S. aureus. All biofilms 
of L. brevis strains significantly reduced pathogenic 
bacterial growth (p<0.05). In addition, each biofilm had a 
substantially different pathogenic bacterial growth 
inhibition value, which was heavily affected by the strain 
type and length of exposure (Margalho et al., 2021). 
Growth of S. aureus was significantly reduced after 72 h 
of exposure to L. brevis biofilms. Lactobacillus brevis KA2 
biofilm induced the greatest inhibition of growth of that 
pathogenic bacterium of all strains of biofilm, as much as 
2.29 ± 0.056 log CFU/mL (78.3%). Growth of the 
pathogenic bacterium E. coli was also strongly inhibited 
after 72 h of exposure to the L. brevis biofilms, as shown 
in Figure 2. The pathogenic bacteria had the highest 
inhibitory value of 3.49 ± 0.049 log CFU/mL (66.51%) 
when exposed to L. brevis KB1 biofilm (Solichah and 
Retnaningrum, 2020). 

The results of growth inhibition of the pathogenic 
bacteria S. aureus and E. coli after exposure to LAB 
biofilms were concordant with the results of previous 
investigations (Gómez et al., 2016; Kumar et al., 2017). 
Several other researchers also reported similar results 
that L. brevis biofilm can suppress the growth of S. 
aureus more strongly than that of E. coli (Sadeghi et al., 
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Figure 1: The growth of S. aureus during periods of biofilm exposure. (a) L. brevis KA2, (b) L. brevis KA5, (c) L. brevis KB1 and (d) L. brevis KC4. The 
treatments BF1, BF2, BF3 and BF4 represent biofilm exposure of L. brevis KA2, L. brevis KA5, L. brevis KB1 and L. brevis KC4, whereas the control (C) was 
without biofilm exposure. 

 
(a) 

 
(b) (c) 

 
(d) 

 
Figure 2: The growth of E. coli during periods of biofilm exposure. (a) L. brevis KA2, (b) L. brevis KA5, (c) L. brevis KB1 and (d) L. brevis KC4. The 
treatments BF1, BF2, BF3 and BF4 represent biofilm exposure of L. brevis KA2, L. brevis KA5, L. brevis KB1 and L. brevis KC4, whereas the control (C) was 
without biofilm exposure. 
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Table 1: Percentage survival of L. brevis biofilms in pH 2.5 incubated at 37 °C for 4 h. 
 

L. brevis biofilms strains 
Viable cells (109 CFU/mL) 

Survival (%) (4 h/0 h) 
0 h 4 h 

KA2 3.33 ± 0.006 3.15 ± 0.003 94.59b 
KA5 2.70 ± 0.002 2.34 ± 0.005 86.67c 
KB1 2.34 ± 0.001 2.26 ± 0.004 96.58a 
KC4 2.90 ± 0.001 2.32 ± 0.001 80.00d 

Values are expressed as means ± SD. The means in the same column with different superscript characters are substantially significant 
different (p<0.05). 

 
Table 2: Percentage survival of L. brevis biofilms in 0.3% bile salt incubated at 37 °C for 4 h. 
 

L. brevis biofilms strains 
Viable cells (109 CFU/mL) 

Survival (%) (4 h/0 h) 
0 h 4 h 

KA2 4.28 ± 0.002 3.92 ± 0.003 91.59b 
KA5 3.26 ± 0.004 2.64 ± 0.001 80.98c 
KB1 3.92 ± 0.001 3.71 ± 0.003 94.64a 
KC4 3.65 ± 0.002 2.73 ± 0.002 74.79d 

Values are expressed as means ± SD. The means in the same column with different superscript characters are substantially significant 
different (p<0.05). 

 
2019; Hojjati et al., 2020). Noohi et al. (2021) found 
contrasting results, L. brevis biofilm was able to inhibit E. 
coli growth more effectively than that of S. aureus. 
Besides being able to inhibit S. aureus and E. coli, L. 
brevis biofilm has been observed to inhibit pathogenic 
bacteria from various species, including Listeria 
monocytogenes and Salmonella enterica (Sadeghi et al., 
2019). Jang et al. (2021) reported on the ability of L. 
brevis biofilm to inhibit Streptococcus mutans, which 
causes dental caries. Salmonella enterica, 
Staphylococcus epidermidis, multiple drug resistant S. 
enterica and Shigella flexneri have all been reported to be 
inhibited by L. brevis biofilm (Rahmeh et al., 2019). 

The ability of LAB biofilms to inhibit pathogenic 
bacteria is linked to the quorum sensing system, in which 
each of these cells interacts with one another in order to 
thrive in both nutritional competition and pathogenic 
bacteria (Guerrieri et al., 2009). In addition, the LAB 
biofilms that also produce substances such as 
biosurfactants and bacteriocins and have probiotic 
properties were more effective at inhibiting the growth of 
pathogenic bacteria (Gómez et al., 2016). Staphylococcus 
aureus and E. coli pathogens can be further inhibited by 
all these substances (Singh and Cameotra, 2004). 
 
Tolerance of L. brevis biofilms strains to acidic pH 
and bile salts 
 
Lactobacillus brevis biofilms were subjected to a range of 
assays, including acidic pH and bile salt tolerance, to 
assess their probiotic qualities for biopreservative 
development. As indicated in Table 1, they had a high 
survival rate in pH 2.5 incubated for 4 h at 37 °C. At pH 
2.5, all LAB biofilms demonstrated good growth, with 
numbers of viable LAB cells in the range of 2.26-3.15 × 
109 CFU/mL after 4 h of incubation. Meanwhile, L. brevis 
biofilm KB1 showed the highest tolerance significantly 
with a survival value of 96.85% at pH 4, followed by L. 

brevis KA2, L. brevis KA5 and L. brevis KC4 with survival 
values of 94.59%, 86.67% and 80%, respectively 
(p<0.05). 

Lactobacillus brevis biofilms also demonstrated good 
growth ability after being cultured for 4 h at 37 °C in the 
test of tolerance to 0.3% bile salt, as shown in Table 2. 
They can grow in these conditions of bile salt stress and 
maintain a significant number of viable cells, ranging from 
2.64 to 3.92 × 109 CFU/mL. With a survival ability of 
94.64%, L. brevis biofilm KB1 demonstrated the strongest 
resistance to 0.3% bile salt, followed by L. brevis biofilm 
KA2, L. brevis biofilm KA5 and L. brevis biofilm KC4 at 
91.59%, 80.98% and 74.79% (p<0.05). 

The ability of LAB biofilms to survive at acidic pH and 
in the presence of bile salts is a crucial trait for their 
application as food biopreservatives. A similar ability in 
LAB was also published by Aarti et al. (2017) who 
investigated that L. brevis LAP2 from a fermented fish 
product (hentak) of Manipur, India and L. brevis LB062 
from cheese were able to survive in low acid and bile salt 
environments to 90% and 85%, respectively (Zhang et al., 
2020). Acid and bile salt resistance have been discovered 
in Lactobacillus spp. isolated from human saliva (Azizian 
et al., 2021). 

LAB strains were able to successfully gain stress 
resistance to acidic pH and bile salt by regulating their cell 
physiology, including regulating the intracellular 
microenvironment, maintaining cellular membrane 
functionality and bile salt hydrolase production. The 
regulation of the intracellular environment was carried out 
by accumulating amino acids and regulating intracellular 
pH. Valine, leucine and isoleucine were among the amino 
acids that LAB accumulates. Furthermore, under LAB 
stress exposure, the amino acids proline and arginine 
were appropriate solutes (Huang et al., 2016; Wang et al., 
2018). Amino acid metabolism via the arginine deiminase 
(ADI) and glutamate decarboxylase (GAD) pathways also 
contributed to BAL’s intracellular pH regulation. In the ADI 
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Figure 3: Percentage of cells released in L. brevis biofilm with different vortex speed (a) 600 rpm, (b) 1200 rpm and (c) 
1800 rpm. 
 
route, arginine is transformed to ornithine, which results in 
the generation of NH3, CO2 and ATP. Meanwhile, 
glutamate decarboxylase (GAD) converts glutamate to ɣ-
aminobutyrate (GABA), allowing intracellular pH to be 
increased (Wang et al., 2018). 

Fatty acid distribution, fluidity and membrane integrity 
all play a role in the regulation of LAB cellular membrane 
function. Membrane fatty acid synthesis was regulated to 
enhance the ratio of unsaturated to saturated fatty acid 
biosynthesis in the cell membrane (Bonomo et al., 2018; 
Guo et al., 2020). LAB’s ability to produce bile salt 
hydrolase, which catalyzes the deconjugation of 
conjugated bile salts, also plays a role in bile salt 
resistance. According to reports, the bsh1 and bsh3 
genes influence the activity of those enzymes (Wang et 
al., 2021a). 
 
Adhesion characteristic of L. brevis biofilms 
 
The effectiveness of L. brevis biofilm as a biopreservative 
can also be determined based on their aggregation 
strength, which was investigated by an adhesion test 
using vortex treatment. Although vortex treatment is a 
traditional method, it is inexpensive and simple to 
implement, and it is successful in releasing bacterial cells 
that have adhered to the substrate (Kobayashi et al., 
2009). In addition, the biofilm adhesion test using vortex 
has been used successfully to analyze the aggregation of 
several biofilm-forming bacteria (Webber et al., 2015; 
Siradje et al., 2017). 

At different vortex speeds, adhesion measurements of 
four L. brevis strains at 24 h, which provided the highest 
biofilm aggregation, revealed less than 8% loose cells 
(Figure 3). These findings suggest that in the formation of 
biofilms, those four L. brevis strains have a high level of 
cell aggregation. In L. brevis KA2, KA5, KB1 and KC4 

biofilms, the average percentages of cell release were 
2.76%, 6.13%, 3.75% and 5.38%, respectively. The yield 
of cells released from LAB biofilms was less than 6.46% 
in the vortex treatment at 600 rpm, while it was 5.96% in 
the vortex treatment at 1200 rpm and 1800 rpm which 
conducted once (Sapalina and Retnaningrum, 2019). 
These findings showed that increasing the vortex speed 
of the biofilm treatments did not result in an increase in 
cell release from the biofilms. 

The difference in the percentage of cells released 
from the LAB biofilms were influenced by several factors, 
the properties of substrate, such as roughness and 
hydrophobic interactions, as well as the biofilm's adhesive 
factor, which includes protein, DNA and polysaccharides 
(Elbourne et al., 2019). In addition, the confounding 
factors such as metabolite repression, reduced nutrient 
availability, changes in internal bacterial biochemistry and 
endogenous enzyme degradation, on the other hand, can 
reduce the intensity of biofilm aggregation (Viljoen et al., 
2020). 
 
Surface texture and element composition of L. brevis 
biofilm 
 
The surface texture and element composition of L. brevis 
biofilm KA2 and KB1 that produced the highest inhibitory 
effect of L. brevis biofilms against pathogenic bacteria 
indicators, tolerance to acidic pH and bile salts, and 
strongest adhesion were further analyzed through SEM-
EDS. The SEM images showed both biofilm structures 
clearly, as shown in Figure 4. The bacterial cells that 
formed biofilm attached to each other and they formed a 
bacterial community enveloped by the EPS matrix. The 
morphology of LAB cells was clearly visible in the form of 
rods with a smooth surface biofilm textures. Similar 
results were reported by previous researchers who
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(b) 
 

 
 

(d) 
 

 
 
Figure 4: The SEM of L. brevis biofilm. (a) Biofilm surfaces of L. brevis KA2, (b) Biofilm surfaces of L. brevis KB1, (c) 
Biofilm cells of L. brevis KA2 and (d) Biofilm cells of L. brevis KB1. Magnification (a, b) 500× and (c, d) 5000×. Scale 
bars (a, b) 50 µm and (c, d) 5 µm. 
 
investigated the rod LAB with smooth biofilm textures 
(Kubota et al., 2008; Pinaria et al., 2016; Kumar et al., 
2017). In addition, both L. brevis strains showed strong 
aggregation. These SEM results were consistent with 
their aggregation strength results, which were 
investigated by an adhesion test using vortex treatment. 
Bacterial aggregation is crucial in a number of biological 
niches (Merino et al., 2019). The aggregation ability of L. 
brevis strains is related to their attachment to surface of 
biotic and abiotic materials, thereby causing an inhibitory 
effect on colonization and infection of pathogenic 
bacteria, as well as foodborne pathogens (Arena et al., 
2017; Hossain et al., 2017). The formation of biofilms in 
food and on food-contact surfaces by L. brevis strains 
could limit the adhesion and proliferation of foodborne 
pathogenic bacteria, minimizing food contamination 
during processing. 

When compared with those of bacteriocin, the 
qualities of LAB biofilms as a food biopreservative are 

superior. EPS, which are elements of LAB biofilms, are 
responsible for this outstanding property. EPS-producing 
whole cells and purified EPS are used in the food 
industry, among others, to avoid the growth of spoilage 
bacteria and foodborne pathogens. Furthermore, they 
serve a critical function in increasing the texture, rheology 
and mouth feel of food formulations (London et al., 2015; 
Zarour et al., 2017; Zhou et al., 2019). Furthermore, LAB 
biofilms are resistant to environmental stress and several 
process conditions, such as culture media, temperature 
and pH. While these harsh conditions have a significant 
impact on bacteriocin's antibacterial action. Muruzović et 
al. (2018) showed a reduction in bacteriocin production by 
the LAB genera of Lactobacillus and Lactococcus. 

Figure 5 shows the findings of the elemental 
composition analysis of the LAB biofilm. Each of the 
elements discovered had a distinct peak height, with the 
element detected from the sample examined represented 
by the green peak. However, the elements Na, Al, Si, S, 
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Figure 5: Element composition of L. brevis biofilm determined by SEM-EDS analysis. (a) Element composition of L. 
brevis KA2 biofilm and (b) Element composition of L. brevis KB1 biofilm. 
 
Cl, K, Ti and Zn found in this study were impurities. Some 
elements including Si, Al, Ti and Zn were found on the 
surface of the cover slip. Meanwhile, the components Na, 
S, K and Cl came from the MRS medium broth. These 
impurity components were also discovered in the SEM-
EDS study of EPS generated by Lactobacillus casei AL15 
by a prior study (Pinaria et al., 2016). 

The SEM-EDS analysis showed that the L. brevis KA2 
biofilm consisted of 22.02% carbon, 38.08% oxygen and 
11.02% nitrogen, whereas L. brevis KB1 biofilm consisted 
of 37.96% carbon, 31.12% oxygen and 20.75% nitrogen 
(Sapalina and Retnaningrum, 2019). Carbon and oxygen 
are known as carbohydrate constituents. Nitrogen is 
known as the main constituent of proteins, but some 
complex carbohydrates also contain nitrogen. Thus, the 
existence of the elements C, O and N were related to LAB 
biofilm composition, because LAB biofilm contains EPS, 
which consists of polysaccharides and proteins. 
According to Di Martino (2018), one of the important 
elements in the formation and maintenance of biofilm 
structures is EPS, which contain polysaccharides, 

proteins and DNA. The presence of EPS as a constituent 
of LAB biofilms influences their ability to survive in an 
acidic pH and bile salt environment (Vamanu, 2017). 
Those biofilms also function as a barrier for gases, 
vapors, solutes and lipids, as a protective structure to 
prevent biological, chemical and physical hazards (Moradi 
et al., 2021). 

The availability of particular molecules in their surface 
as an EPS, which worked as ligands to enable them to 
attach to pathogens, could explain the variance in 
percentages of C, N and O values of two L. brevis strains 
(Tsai et al., 2018). Several researchers reported the 
components and compositions of EPS in the genus 
Lactobacillus, which were unique with bioactive abilities 
so that they have lot of promise in the food, biomedical 
and pharmaceutical industries (Ibarburu et al., 2015; 
Moscovici, 2015). Rajoka et al. (2019) published that the 
heteropolysaccharide composition of EPS from L. kefiri 
MSR101 isolated from kefir grains consisted of glucose 
and galactose, and detected carboxyl hydroxyl groups, 
respectively. That purified EPS was able to inhibit the 
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growth of HT-29 cancerous cells by 44.1% through up-
regulation of caspase3, caspase8, caspase9, Cyto-c, 
BAX and BAD gene expression. 

Bomfim et al. (2020) informed that L. plantarum 
CNPC003 from dairy milk produced heteropolysaccharide 
EPS notably formed by mannose and glucose, with minor 
amounts of galactose. Its EPS at 8 mg/mL has antioxidant 
activity with 2,2′-azino-bis-3-ethylbenzothiazoline-6-
sulfonic acid (ABTS) radical-scavenging activity of 90.88 
± 0.80%. The EPS homopolysaccharides in the form of 
glucans with a molecular weight of 104 kDa were 
generated by L. pentosus EPS47FE and EPS68FE. The 
anticoagulant and fibrinolytic activity of the EPS bioactivity 
was impressive. In addition, the EPS of 10 mg/mL 
showed rather high DPPH radicals in the range of 54.50-
68.90; moreover, the emulsifying activity ranged from 
53.33 to 83.33 after 48 h (Abo Saif and Sakr, 2020). 

Recent research obtained purified EPS (10 mg/mL) of 
L. paracasei isolated from sauerkraut samples showing a 
total antioxidant capacity of 71.15%, while the antioxidant 
activity using hydrogen peroxide and 2,2-diphenyl-1-
(2,4,6-trinitrophenyl) hydrazyl (DPPH) was 68.65% and 
60.31%, respectively. The presence of components in the 
form of sulfate compounds, carboxyl groups and 
hydrogen gives EPS its antioxidant properties. The 
elements carbon, hydrogen, nitrogen and sulfur were 
detected by mass spectrometry at 54.36%, 21.74%, 
9.63% and 18.03%, respectively (Shankar et al., 2021). 
 
CONCLUSION 
 
From the investigations, four strains of L. brevis biofilms 
isolated from kimchi could inhibit the growth of S. aureus 
FNCC 0047 and E. coli FNCC 0091. All the LAB biofilms 
also showed probiotic properties, which were tolerance to 
pH 2.5 and 0.3% bile salt, and strong adhesion. The L. 
brevis biofilm KA2 and L. brevis KB1 produced the 
highest inhibitory ability against the growth of those 
pathogenic bacteria. Lactobacillus brevis biofilm KA2 
could inhibit the growth of S. aureus FNCC 0047 with a 
reduction value of 2.29 ± 0.56 log CFU/mL, whereas L. 
brevis KB1 could inhibit the growth of E. coli FNCC 0091, 
with a reduction value of 3.49 ± 0.49 log CFU/mL. 
Lactobacillus brevis biofilm KA2 and KB1 showed higher 
tolerance to pH 2.5 and 0.3% bile salt at 37 °C for 4 h 
compared with two other strains (L. brevis KA5 and L. 
brevis KC4). Both L. brevis biofilms also had higher 
aggregation. As a result, during vortex treatments at 
speed of 600 rpm, 1200 rpm and 1800 rpm, very few cells 
were released. The percentage values of cells released 
from the L. brevis biofilm KA2 and L. brevis biofilm KB1 
were 2.76% and 3.75%, respectively. According to SEM-
EDS analysis, both biofilm strains showed a smooth 
surface texture and rod-shaped cell morphology and 
contained many components such as carbon, oxygen and 
nitrogen that were constructed of extracellular polymeric 
compounds (EPS). All these excellent characteristics will 
be extremely beneficial in terms of biopreservation. 
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