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ABSTRACT 
 
Aims: This research was conducted to develop and characterize polyvinyl alcohol (PVA)/montmorillonite (MONT) clay 
incorporated with carvacrol (Carva) nanocomposite film as a potential material in wound dressing. 
Methodology and results: Organophilic MONT clay, which was initially modified from commercial MONT clay by 
cetyltrimethylammonium bromide (CTAB), was used in the polymerization process using PVA. The synthesized 
nanocomposites were visualized via transmission electron microscopy (TEM). The developed film (PVA/MONT/Carva 
nanocomposite film) was characterized via Fourier transform infrared (FTIR). The investigation on mechanical property 
and antimicrobial activity of the film was also performed. All nanocomposites are spherical, with a size of 92.8 ± 22.1 nm. 
The -OH stretch, C-H stretch, aromatic group, SiO stretch, and C-O from acetyl group were identified in the 
PVA/MONT/Carva nanocomposite films. During the chemical release test, carvacrol attained a plateau at 24 h, with a 
total release of 62.3%. This nanocomposite exhibited a severe detrimental influence on the growth of Gram-bacteria and 
yeasts, which represented a broad spectrum of antimicrobial agents. All test microorganisms showed approximately up 
to 82% reduction of microbial growth during the Hohenstein challenge test. Physically, the nanocomposite films were 
yellowish and apparent. The film was sturdy, flexible, elastic and consisted of excellent water holding capacity. 
Conclusion, significance and impact of study: PVA/MONT/Carva nanocomposite film may have a useful potential to 
be merged in the pharmaceutical application, especially in wound dressing production.  
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INTRODUCTION 
 
An open wound is susceptible and vulnerable to microbial 
infection. Thus, wound dressing incorporated with the 
antimicrobial compound is crucial to prevent microbial 
infection on the wound. However, most of the polymers 
used in wound dressing production are incapable of 
releasing the antimicrobial compound in a controlled 
manner. Thus, the antimicrobial effect on the wound is 
less effective. Wound infection contributes to the 
increased morbidity and mortality rate worldwide 
(Woodford and Livermore, 2009). Generally, an open 
wound is sensitive to microorganisms from the 
surroundings if the wound is not managed properly (Shah 
et al., 2013). Therefore, the wound management regiment 
includes the dressing as a finishing step to lower the risk 
of contamination and infection. Nowadays, there are 
different types of wound dressing materials available in 
the market such as hydrogels, films, membranes, 

sponges and hydrocolloids. A suitable material type is 
crucial to provide appropriate oxygenation, temperature 
and nutrient requirement for cellular recovery (Flanagan, 
2000). 

Synthetic polymer polyvinyl alcohol (PVA) is known for 
several medical usages since it is equipped with 
competent biocompatibility, biodegradability and water-
solubility characteristics. It commonly relates to 
membrane development (Chuang et al., 2000) and 
synthetic biomedical tools (Kobayashi et al., 2003). 
However, PVA application as a dressing material is 
limited due to its low solvent resistance, poor strength, 
and low heat stability. Therefore, polymer nanocomposite 
is an alternative modification to enhance the physical 
properties of the polymer. MONT clay is composed of an 
expandable type of aluminosilicate derived from a 
smectite-type clay mineral. This clay has a relatively high 
cation-exchange layered structure. It is used in many 
common household items, such as body detox 
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supplements, water purifiers, natural antiseptic and 
disinfectant. However, MONT clay is rarely used as 
wound dressing material as the nanolayers are easily 
agglomerated. Thus, in most cases, these layered 
silicates need to be modified with an organophilic 
chemical to induce a suitable size of nanocomposite. This 
modification could be executed by substituting the natural 
inorganic cations with alkylammonium ions. With this 
modification, the MONT surface will be able to interrelate 
with other organic compounds dissolved in water (Kokabi 
et al., 2007). A combination of clay and polymer can 
construct a sturdy polymer/clay composite film or 
hydrogel. Clay functions as the cross-linker and can be 
easily accessed at an affordable cost (Xiang et al., 2006). 
Moreover, clays show barrier properties that delay 
antibiotic diffusion from the wound dressing, which 
provides a sustainable antimicrobial effect (Zeng et al., 
2005). Wound dressing incorporated with an antimicrobial 
agent is important to prevent microbial infection on the 
wound, particularly diabetic (O’Meara et al., 2000; Nelson 
et al., 2006), surgical and accident wounds (Harihara et 
al., 2006).  

Carvacrol is a phenolic monoterpene with significant 
antimicrobial activities (Roller and Seedhar, 2002). This 
compound is the major component found in oregano, 
which accounts for 61.08-83.37% of the essential oil 
(Béjaoui et al., 2013). Commonly, it is used as an active 
additive in perfumes, mouthwash, food flavoring, 
cosmetics and ointment for joints massaging 
(Rattanachaikunsopon and Phumkhachorn, 2010). 
Recently, carvacrol has been incorporated in food 
packaging due to its antimicrobial efficacy (de Souza et 
al., 2020). The addition of carvacrol could prolong the 
shelf life of the food, however, the process is not without 
challenge since a few considerations must be accounted 
including food storage period and post-use issues 
(Carvalho et al., 2018). The biological activities of 
carvacrol, especially as an antimicrobial agent, promise a 
vast pharmaceutical and health line application. For 
instance, Gomez-Rodriguez et al. (2018) have integrated 
carvacrol in pectin/aloe gel to develop an antimicrobial 
film suitable for wound dressing. As reported, E. coli 
demonstrated the highest sensitivity on the test film. 
Hence, this study aimed to analyze the in vitro 
antimicrobial efficacy of the PVA/MONT/Carva 
nanocomposite films against wound pathogens. The 
synthesis and characterization of the developed 
nanocomposite were also evaluated to determine its 
suitability as a wound dressing material. 

  
MATERIALS AND METHODS 
 
Modification of montmorillonite 
 
Montmorillonite clay (MONT) (Merck, USA) was modified 
by using cetyltrimethylammonium bromide (CTAB) to 
obtain the organophilic montmorillonite (Zhang et al., 
2014). Firstly, 10 g of MONT was dissolved in 1 L of 
double distilled water (DDW) at 80 °C for 24 h. After that, 
100 mL of 5% (w/v) CTAB solution was combined into the 

MONT solution and stirred continuously for 10 h. Then, 
the mixture was filtered using Whatman No 1 filter paper 
to obtain the modified MONT. The material was washed 
thrice with DDW. Then, it was dried at room temperature, 
prior to use. 
 
Preparation of carvacrol-loaded PVA/MONT clay 
nanocomposite film 
 
The nanocomposite was prepared by mixing 15% (w/v) 
PVA and 5% (w/v) modified MONT in 100 mL of DDW at 
90 °C for 4 h. Then, 1% (w/v) carvacrol (Merck, USA) was 
added to the mixture. Next, 20 mL of the mixture was 
poured in 90 mm circular mould and kept at –20 °C for 24 
h. After that, the film was taken out from the freezer and 
thawed at room temperature (25 °C). PVA/MONT clay 
nanocomposite without carvacrol was set as a blank 
control. 
 
Microscopic observation 
 
The morphology and structure of PVA/MONT/Carva 
nanocomposite film was characterized under 
Transmission Electron Microscopy (TEM). The sample 
was stained using uranyl acetate and placed on copper-
type grid. The sample was then analyzed through TEM 
(Phillips CM12, Netherlands) with an operation voltage of 
120 kV (Tong et al., 2017).  
 
Fourier transform infrared analysis 
 
The functional group of PVA, MONT, carvacrol and 
PVA/MONT/Carva nanocomposites were detected 
through using Fourier Transform Infrared Spectroscopy 
Attenuated Total Reflectance (FTIR-ATR) (Thermo 
Scientific, Nicolet IS10, USA). The peaks were attained at 
a wavenumber range of 4000-400 cm-1, with a resolution 
of 4 cm-1 and 32 scans (Chin et al., 2020). 
 
Carvacrol release test 
 
Method of Shaikh et al. (2009) was applied in the 
analysis. Artificial sweat solution [5 g/L sodium chloride 
(Mallinckrodt, Ireland), 1 g/L urea (BioFroxx, Germany) 
and 1g/L lactic acid (Bendosen, Norway), pH 5.5] was 
used as test medium to study the carvacrol release 
property from the nanocomposite. The carvacrol-loaded 
PVA/MONT clay nanocomposite film was excised into a 
square size of 5 cm × 5 cm. Then, the samples were 
inserted in 20 mL of artificial sweat solution, prior to 
mixing process in an incubator at 37 °C and speed of 80 
rpm. At pre-determined time gaps (0, 2, 4, 6, 8, 12, 24, 36 
and 48 h), 1 mL of sample was withdrawn from the flask. 
Subsequently, the solution was flowed through 0.22 μm 
pore size filter (Millipore, USA) using a syringe. The 
amount of carvacrol released was evaluated by using 
High Performance Liquid Chromatography (HPLC, Perkin 
Elmer Series 200, USA). All samples were equilibrated 
with a mobile phase, specifically acetonitrile and water, at 
a ratio of 1:1 (v/v) and quantified at 274 nm. Twenty 
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microliter of the sample was subjected to a C18 column 
(particle size: 5 µm, length: 120 mm, Symmetry, Waters, 
USA) and further analyzed by Breeze software. The flow 
rate was set at 1.0 mL/min. To quantify the concentration 
of carvacrol released, peak area was quantified according 
to the standard curve (concentration of 0 to 100 µg/mL 
commercial carvacrol). A graph of carvacrol released 
versus time was accordingly plotted. All data were 
presented in three replicate and expressed as average ± 
standard deviation. 
 
Antimicrobial testing 
 
Test microorganisms 
 
Four Gram-positive bacteria (Bacillus cereus, Bacillus 
subtilis, methicillin-resistant Staphylococcus aureus 
(MRSA) and Staphylococcus aureus), 4 Gram-negative 
bacteria (Escherichia coli, Proteus mirabilis, Yersinia sp. 
and Pseudomonas aeruginosa) and 2 yeasts (Candida 
albicans and Candida utilis) were used in this study. 
These microorganisms have been widely found in wound 
infections (Upreti et al., 2018; Rozman et al., 2020). All 
microorganisms were courtesy of Universiti Sains 
Malaysia, which originally provided by Hospital Seberang 
Jaya, Pulau Pinang. All test microorganisms originated 
from chronic wounds. To maintain the viability of the 
microorganisms, all living test microorganisms were sub-
cultured on nutrient agar periodically. For inoculum 
preparation, the microbial colonies were inoculated in 5 
mL sterile distilled water. Then, the suspension was 
vigorously mixed and matched to 0.5 McFarland 
standard. The final inoculum concentration for each test 
bacteria was set at 1 × 108 CFU/mL and 1 × 106 CFU/mL 
for yeast. 
 
Disc diffusion assay 
 
Hundred microliter of the abovementioned microbial 
inoculum was streaked on the surface of Mueller Hinton 
agar (Merck, USA) using a sterilized cotton swab. The 
blank control (without carvacrol) and carvacrol-loaded 
PVA/MONT clay nanocomposite film were excised into 6 
mm diameter disc and subsequently placed on the 
inoculated agar medium. Each plate was kept at 37 °C for 
24 h. After that, the diameters of inhibition zone appeared 
around the test film was analyzed and its measurement 
was recorded (Tong et al., 2014). All data were presented 
in three replicate and expressed as average ± standard 
deviation. 
 
Hohenstein challenge test (AATCC TM100) 
 
The test microorganisms with positive inhibitory activity on 
disc diffusion assay were selected for Hohenstein 
challenge test (Vaideki et al., 2008). The carvacrol-loaded 
PVA/MONT clay nanocomposite and blank control with 
the size of 2 cm × 2 cm were respectively placed in 10 mL 
of nutrient broth (Merck, USA) containing 100 µL of 
microbial inoculum. All flasks were kept in an incubator for 

24 h at 37 °C, 120 rpm. After that, viable cell count was 
executed to determine the microbial load of the sample by 
spreading the microbial suspension on the nutrient agar 
(Merck, USA). The sample was appropriately diluted to 
achieve a colony count of 30-300 per plate. The 
antimicrobial efficacy of the sample was expressed in 
percentage of growth and compared to blank control. All 
data were presented in three replicate and expressed as 
average ± standard deviation. 
 
Mechanical properties (ASTM D-1822-L) 
 
The mechanical properties of the carvacrol-loaded 
PVA/MONT clay nanocomposite were determined via 
universal testing machine (Llyod LR30K Plus, USA). The 
nanocomposite film was cut into 100 mm × 20 mm strips. 
The mechanical properties including tensile strength, 
Young’s modulus and elongation at break were 
approximated by setting the speed at 10 mm/min (Zhao et 
al., 2006). All data were presented in three replicate and 
expressed as average ± standard deviation. 
 
Hardness (ASTM D-2240.95) 
 
To determine the hardness of the carvacrol-loaded 
PVA/MONT clay nanocomposite, the film was cut into 20 
mm × 20 mm × 5 mm. The hardness property was tested 
with type A shore durometer (Intertek, UK) (Kokabi et al., 
2007). The measurements were evaluated by pressing 
the probe at 5 different points and the data was 
documented 15 sec after the probe touched the test film. 
 
Equilibrium water content (ASTM D 647) 
 
The pre-dried carvacrol-loaded PVA/MONT clay 
nanocomposite film (50 °C, 24 h) was excised to a size of 
70 mm × 25 mm × 3 mm. Next, the film was immersed in 
20 mL distilled water at an ambient temperature. After 2 h 
and 24 h, the film was taken out and weighed to a 
constant weight (Taghizadeh and Sabouri, 2013). All data 
were presented in three replicate and expressed as 
average ± standard deviation. 
 
RESULTS AND DISCUSSION 
 
Composites are a class of materials originating from 
suitable combinations of two or more objects in some 
suitable technique. Thus, nanocomposites are 
composites that at least one of the particles in the 
nanometer range. Nanocomposites can improve the 
physical properties of the material (Gangopadhyay and 
De, 2000). The physical properties are improved when 
the dimension achieved the nano-size level. The size of 
the components used in nanocomposites and the degree 
of mixing during preparation could influence the 
properties of the nanocomposites. Figure 1 depicts the 
morphology and structure of the carvacrol-loaded 
PVA/MONT clay nanocomposite under TEM view. There 
was no sign of aggregation observed among the 
nanocomposites. Various sizes were detected, albeit all 
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nanocomposites were less than 100 nm in diameter, with 
an average of 92.8 ± 22.1 nm. A report by Hansen et al. 
(2007) has supported this result by stated that the 
nanocomposites are components range from 1 to less 
than 100 nm. 

The FTIR spectra reveal functional groups of the 
PVA/MONT/Carva nanocomposite film (Figure 2). The 
result has proven the integration efficiency and stability of 
PVA/MONT/Carva nanocomposite. Functional groups are 
assigned to the regions from 4000 to 1300 cm-1, while 
molecular fingerprints are allocated to the regions from 
1300 to 400 cm-1. The stretching vibration of the -OH 
moiety displays a broad absorption peak of 3261.86 cm-1 
in the spectrum of PVA/MONT/Carva nanocomposite film. 
A few of tailing spectra observed, including C-H stretch at 
wavenumber 2940.22 cm-1, aromatic group at 
wavenumber 1649 cm-1, C-O from acetyl group at 
wavenumber 1087 cm-1 and SiO (silicon monoxide) 
stretch at wavenumber 826.61 cm-1. All these 
wavenumbers are summarized in Table 1. A broad 
spectrum of -OH moiety in PVA/MONT/Carva 
nanocomposite film is most probably intensified from 
carvacrol and PVA. Both chemicals displayed the -OH 
stretch at wavenumbers of 3352.01 and 3435 cm-1, 
respectively. Similar peaks of -OH stretch, C-H stretch 
and C-O stretch from PVA was reported by Alhosseini et 
al. (2012) and Gergeroğlu et al. (2020). According to 
Alhosseini et al. (2012), the broad and sharp band in a 
range of 3550 and 3200 cm−1 is linked to -OH stretch, 
which associated with water molecules present in the 
tested sample. The functional group for C-O acetyl group 
at wavenumber 1093 cm-1 has confirmed the presence of 
PVA in the developed film. This group is the remaining 
acetate group in PVA produced during the saponification 
(Gergeroğlu et al., 2020). 

There were three functional groups of carvacrol, that 
of -OH stretch (3352.01 cm-1), C-H stretch (2926.79 cm-1) 
and C-C stretch (1620.49 cm-1), detected in the 
PVA/MONT/Carva nanocomposite films. This finding was 
in line with Andrade et al. (2020). They have identified a 
few functional groups in pure carvacrol, including -OH 
stretch, C-H stretch, C-C stretch, C-O stretch, and also 
aromatic C-H bending at wavenumbers of 3500-3300 cm-

1, 2868-2958 cm-1, 1620-1485 cm-1, 1240 cm-1 and 800 
cm-1, accordingly. SiO stretch was observed at 
wavenumbers of 1027.26 cm-1 from pure montmorillonite 
clay (Pironon et al., 2003). However, with the presence of 
PVA and carvacrol, a shifting peak towards a lower 
frequency (826.61 cm-1) was recorded. Zhang et al. 
(2017) reported a comparable peak at 837 cm-1 during 
their study on sulfhydryl-lignocellulose/montmorillonite 
(SLT) nanocomposite. The presence of SiO in the 
developed film is a prominent success indicator for this 
experiment since the chemical is one of the main building 
blocks of montmorillonite clay. 

Chemical release test was investigated to determine 
the carvacrol release behavior from PVA/MONT clay 
nanocomposite by quantifying the amount of carvacrol 
released in the artificial sweat solution. The test medium 
was prepared at pH 5.5 to mimic the skin pH. Based on 

       
 
Figure 1: TEM micrographs of PVA/MONT/Carva 
nanocomposite films. On the micrograph, 
nanocomposites ranging from 92.8 ± 22.1 nm were 
observed, with no sign of aggregation.  
 

 
Figure 2: The infrared spectrum for PVA/MONT/Carva 
nanocomposite films. 
 
Figure 3, the carvacrol was released rapidly at 0 h. An 
initial burst release was observed. This release is ideal for 
wound dressing application to provide a sufficient dosage 
of a drug to combat the pathogens. The drug release 
became consistent from 4 to 24 h, with 1.42 µg/mL of 
carvacrol released per hour. Therefore, it provides a 
consistency of the drug dosage for the treatment. The 
release was in accordance with the first order of kinetic, 
where 62.3 ± 8.4% of carvacrol was released. The 
release reached a plateau at 24 h. This event signified 
excellent drug carrier properties from PVA and MONT 
clay. The slow release of carvacrol from PVA/MONT clay 
nanocomposite was influenced by the addition of MONT 
clay. Reports of drug release from a hybrid substance, 
especially using clay, are varied. In most reports, the drug 
release mechanism is likely depending on nanocomposite 
formation and type of polymeric material use. As for drug 
release from only clay, pH is a concern (Jayrajsinh et al., 
2017). A slower out-release kinetic of carvacrol from low-
density polyethylene (LDPE) was recorded by Shemesh 
et al. (2014). The process of carvacrol release from low-
density polyethylene/clay/carvacrol film took more than a 
month. It is also worth mentioning a report by Jain and 
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Table 1: A summary for functional groups which available in PVA, montmorillonite, carvacrol and PVA/MONT/Carva 
nanocomposite films. 
 

Wavenumbers 
(cm-1) 

Functional group Existing wavenumbers (cm-1) 

Carvacrol Clay PVA PVA/MONT/Carva 
nanocomposite films 

3550-3200 -OH stretch 3352.01 3648.4 
2922.23 

3435 3261.86 

 
3100-2840 

Aromatic C-H 3021.11 NA NA NA 
Aliphatic C-H 2926.79 2922 2928 2940.22 
Aliphatic C-H 2868.88 NA 2859 NA 

1650-1600 Aromatic C=C or 
C-C 

1620.49 NA 1635 1649 

1124-1087 C-O from acetyl 
group 

NA NA 1093 1087 

~950 SiO stretch NA 1027.26 NA 826.61 

 
Datta (2016) on their study on venlafaxine hydrochloride-
loaded montmorillonite-alginate microspheres.  
Approximately 20% of venlafaxine released from the 
developed biopolymeric beads after 26 hours of the 
experimental period. Further time extension that of 29 
hours has accounted for about 22% release (Jain and 
Datta, 2016). On the other hand, Bakre et al. (2016) have 
documented 60-75% curcumin release from curcumin-
loaded polycaprolactone/organoclay nanoparticles after 6 
hours in the phosphate buffer. The clay platelets are 
recognized as an impervious barrier to the diffused 
molecules, which forces them to follow a circuitous 
channel and caused a slower release scattering 
(Choudalakis and Gotsis, 2009). Nanocomposite showed 
terrific potential in drug delivery as they hold a high 
surface to volume ratio and permeability. These 
specialties improve the drug loading capacity and delivery 
applications. 
 

 
Figure 3: Carvacrol release behaviour from 
nanocomposite film. An initial burst release was 
observed, followed by gradual release of carvacrol for a 
period of 24 h. 
 

Disc diffusion test was performed to determine the 
antimicrobial sensitivity of wound microorganisms. Table 
2 shows the diameter of the inhibition zone for each test 
microorganism. MRSA displayed the biggest zone with 
diameter of 19.0 ± 2.3 mm. The control film (blank control) 

did not reveal any antimicrobial activity on all test 
microorganisms. The presence of an inhibition zone 
indicates the antimicrobial activity towards the test 
microorganism. In general, the nanocomposite film with 
carvacrol showed broad-spectrum antimicrobial activity. It 
inhibited Gram-positive, Gram-negative bacteria, as well 
as yeasts. However, the Gram-positive bacteria were 
more susceptible to the PVA/MONT/Carva film. 
 
Table 2: The antimicrobial activity of PVA/MONT/Carva 
nanocomposite films on disc diffusion assay. 
 

 Diameter of inhibition zone 
(mm) 

Test microorganism Blank 
control 

PVA/MONT/Carva 
nanocomposite 

films 
 

Gram-positive bacteria   
MRSA - 19.0 ± 2.3 
S. aureus - 17.7 ± 3.1 
B. cereus - 13.3 ± 2.4 
B. subtilis - 17.0 ± 1.2 
Gram-negative bacteria   
E. coli - 11.0 ± 2.1 
Yersinia sp. - - 
P. aeruginosa - - 
P. mirabilis - 13.0 ± 1.2 
Yeasts   
C. albicans - 10.7 ± 0.8 
C. utilis - 14.3 ± 1.2 

All data were presented in three replicate and expressed as 
average ± standard deviation. 
(-): No inhibition zone. 

 
MRSA can generate biofilms and cause hard-to-treat 

diseases. The biofilms, as well as virulence factors of 
MRSA, contribute to bacterial pathogenesis and 
resistance. The formation of biofilms could jeopardize the 
wound area, which possibly could not be treated. Based 
on the latest investigation, carvacrol signified a potent 
mechanism in mitigating biofilm formation and 
staphyloxanthin synthesis, particularly by directing the 
global regulator SarA and anti-virulence point CrtM of 
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MRSA (Selvaraj et al., 2020). Nostro and Papalia (2012) 
found that carvacrol has a significant influence against 
nosocomial pathogens such as S. aureus, Hemophilus 
infuenzae, Streptococcus pneumoniae and Streptococcus 
pyogenes. Besides, during the application of carvacrol on 
B. cereus, Ultee et al. (2002) relate the detrimental death 
of the bacteria with an expansion of the liposomal layer. 
Currently, Niu et al. (2020) find out that carvacrol shows 
its anti-candidal activity on Candida sp., especially C. 
albicans. There is a lethally toxic effect on C. albicans by 
inducing bacterial apoptosis via the Ca2+/calcineurin 
pathway. It is also worth mentioning a work by Bnyan et 
al. (2014) as carvacrol displayed a notable antibacterial 
activity on P. mirabilis with an inhibition zone of 22 mm. In 
their investigation, carvacrol exhibited no noticeable effect 
on P. aeruginosa. 

Shemesh et al. (2014) have previously developed a 
hybrid film of clay and carvacrol nanocomposites called 
low-density polyethylene for food packaging. This film 
consisted of antimicrobial activity against E. coli with a 
diameter zone higher than 12 mm. The result was 
equivalent to de Souza et al. (2020) as the inhibition zone 
appeared on the same bacteria during the application of 
thermoplastic starch (TPS) film, specifically TPS-15, TPS-
9 and TPS-4.5. The development of carvacrol and 
montmorillonite clay loaded in the TPS film showed a 
complete inhibition zone by TPS-15 hybrid, followed by 
TPS-9 hybrid (1.5 ± 0.98 mm2) and TPS-4.5 hybrid (1.39 
± 0.36 mm2). 

In this study, the synthesized nanocomposite film has 
proven its capability in releasing the carvacrol efficiently 
onto the agar medium and retarded microbial growth. The 
phenolic hydroxyl group in carvacrol gives its 
hydrophobics nature (Ultee et al., 2002). Carvacrol 
disturbs the bacteria growth by penetrating the cell 
membrane, which later drives to distortion of membrane 
integrity and release of bacteria cell substance (Magi et 
al., 2015). It specifically exerts the action by depleting the 
intracellular ATP pool. This condition can be 
accessed via a reduction in ATP synthesis and increment 
in ATP hydrolysis (Ultee et al., 2002). According to 
Ciandrini et al. (2014), carvacrol could cause cell 
expansion and destabilizing the three-dimensional (3D) 
structure of the cytoplasmic layers. It amplified the fluidity 
and absorbency for ions, as well as protons. This 
condition could alter the pH gradient and later lead to 
microbial cell death. 

Table 3 shows the growth reduction of the test 
microorganisms treated with the carvacrol-loaded 
PVA/MONT clay nanocomposite. All test microorganisms 
exhibited notable growth reduction with the highest value 
depicted by B. cereus (97.01 ± 7.3%). The 
nanocomposite showed at least 82.30 ± 5.7% of growth 
reduction, represented by C. utilis. The results were in 
line with the previous study. Rozman et al. (2017) 
recorded that the ethanolic extract of Penicillium 
amestolkiae elv609 indicated notable antimicrobial activity 
against both bacteria, with 100% growth reduction. 
Carvacrol's complex mechanism relies greatly on the 
unique structural features of the molecule. It is a volatile 

Table 3: Percentage of growth reduction of test 
microorganisms once exposed to PVA/MONT/Carva 
nanocomposite films for 24 h. 
 

All data were presented in three replicate and expressed as 
average ± standard deviation. 
 

molecule with significant antimicrobial activity. Obaidat 
and Frank (2009) reported the efficacy of carvacrol vapor 
against food-borne bacteria and yeasts i.e., Escherichia 
coli, Salmonella, C. albicans and C. utilis. 

The mechanical properties of the PVA/MONT/Carva 
film were analyzed to evaluate their suitability as a wound 
dressing material for chronic wounds. The nanocomposite 
film was slightly yellowish and apparent (Figure 4). Table 
4 demonstrates the mechanical properties of carvacrol-
loaded PVA/MONT clay nanocomposite film. The average 
value for tensile strength was 15.88 MPa. The data was 
slightly lower than Soundararajah et al. (2010), which 
reported that 4% (w/v) clay loading of nanocomposite film 
showed an average tensile strength of 29.22 MPa. The 
tensile test aims to present the strength and elasticity of 
the nanocomposite. High tensile strength is mainly due to 
the excellent dispersion of the nano-sized inorganic clay 
layer in the polymer matrix. For wound dressing 
application, the film should be strong but flexible and 
elastic. Lastly, Young’s modulus for the film with carvacrol 
was 779.95 MPa, which significantly higher than 
Soundararajah et al. (2010). The addition of PVA in the 
nanocomposite significantly improved the elasticity of the 
nanocomposite film, which makes it an ideal wound 
dressing component. The elasticity of the 
PVA/MONT/Carva film is vital to keep the wound dressing 
in place during the treatment. Thus, it accelerates the 
wound healing process. 
 

                            
 
Figure 4: Physical structure of PVA/MONT/Carva 
nanocomposite films. 

Test microorganism Percentage of growth reduction 
(%) 

 

MRSA 85.88 ± 6.2 
S. aureus 94.32 ± 7.1 
B. cereus 97.01 ± 7.3 
B. subtilis 94.46 ± 5.5 
E. coli 88.32 ± 3.2 
P. mirabilis 87.39 ± 4.7 
C. albicans 86.18 ± 8.2 
C. utilis 82.30 ± 5.7 
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Table 4: The mechanical properties of PVA/MONT/Carva 
nanocomposite films. 
 

Mechanical properties PVA/MONT/Carva film 
 

Tensile strength (MPa) 15.88 ± 0.10 
Young’s modulus (MPa) 779.95 ± 3.60 
Elongation at break (mm) 15.95 ± 0.30 
Hardness (%) 78.50 ± 0.90 

 

All data were presented in three replicate and expressed as 
average ± standard deviation. 

 
An ideal wound dressing component for chronic 

wounds must possess an excellent swelling activity. This 
property is important to allow the absorption of exudates 
in a chronic wound. The test results showed that 24 h 
immersion could absorb a larger water amount than 2 h 
immersion (Table 5). After 2 h, the weight only increased 
to 46.15 ± 6.2%, while after 24 h soaking process, the 
weight augmented up to 99.23 ± 8.1%. The high-water 
absorption of PVA/MONT/Carva film is due to the nano-
size composite level, which allows high water uptake. In 
addition, the PVA itself has high-water absorption 
capability (Taghizadeh and Sabouri, 2013). The 
statement was in agreement with Paranhos et al. (2007) 
as the combination of PVA with clay influences the water 
absorption property since PVA has good water absorption 
and cation exchange capacity (Paranhos et al., 2007).  
 
Table 5: Water absorption of PVA/MONT/Carva 
nanocomposite films. 
 

Exposure time  
(h) 

Weight 
(g) 

Increase 
percentage (%) 

 

0 (Control) 1.30 ± 0.02 0 
2 h 1.90 ± 0.01 46.15 ± 6.20 
24 h 2.59 ± 0.02 99.23 ± 8.10 

 

All data were presented in three replicate and expressed as 
average ± standard deviation. 

 
CONCLUSION 
 
In conclusion, the PVA/MONT clay nanocomposite film 
with carvacrol was successfully synthesized and 
characterized. The results from characterization analyses 
have proven that PVA/MONT/Carva film owned 
remarkable capacity as an antimicrobial dressing for 
chronic wounds. Thus, we plan to perform the in 
vivo antimicrobial efficiency of carvacrol-loaded 
PVA/MONT clay nanocomposite on animal models for 
future study. 
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