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ABSTRACT 
 
Aims: In this study, ten indigenous microalgae samples from freshwater and marine waters from Malaysia, cultured and 
analysed on proximate and biochemical analysis. The proximate and biochemical analysis consists of starch, 
carbohydrates, lipid, protein, ash and moisture contents. This study was more focused on screening of starch 
accumulation in marine and freshwater microalgae cultures.  
Methodology and results: Based on screening, the results showed that Chlorella salina contents highest starch of 
4.92±0.33%, followed by Spirulina sp. 2.58±1.18%, Isochrysis maritime 0.99±0.33%, and lastly for 
Nitzschiapanduriformis and Naviculadistans contents similar percentage of starch (0.44±0.10 and 0.40±0.07%, 
respectively).  Besides starch analysis, proximate analyses (ash, moisture, lipid, protein, and carbohydrates) have been 
conducted. The results obtained indicated that all the cultures contain more than 4.50% of carbohydrates in average, 
followed by lipid and protein <1%. The results demonstrate that further optimization and various harvesting stages (early 
of exponential phase, early of stationary phase and late stationary phase) may increase lipid, carbohydrates, starch, and 
protein accumulation. Chlorella salina and Spirulina sp. will be used to further study on optimization of physical and 
chemical factors for high starch accumulation.  
Conclusion, significance and impact of study: In conclusion, this experiment focused more on preliminary screening 
for further application of starch uses in food and food packaging industries. 
 
Keywords: Marine and freshwater microalgae, proximate analysis, biochemical analysis
 

INTRODUCTION  
 
The elevating demand for natural products to be utilized in 
sundry applications has incremented interest in algal 
biotechnology over the past two decades (Lee and 
Palsson, 1997; Chisti, 2007). Through algae 
biotechnology, various high-value compounds could be 
engendered and isolated from numerous phototrophic and 
heterotrophic microalgae cultures (Lorenz and Cysewski, 
2000; Machado et al., 2004).  Microalgae efficiently 
convert CO2 to potential biofuels, feeds and high-value by 
products using a small foot print (Chisti, 2007). Microalgae 
can grow on non-arable land and use non-potable water 
without displacing food crops. This growth is considered 
environmental friendly as microalgal biofuels can take 
advantage of nutrients in wastewater and CO2 from power 
plants; while crop plants cannot use these resources 
(Chisti, 2007). Other factors, which should be considered 
simultaneously for sustainable biofuel production include 
but are not limited to: lipid and high added value 
chemicals production (e.g. for pharmaceutical or cosmetic 
industry), extraction economics (solvents, ultrasound 
application, electromagnetic field use, etc.), 
incineration/pyrolysis/gasification of residual biomass, its 
anaerobic digestion for biogas production, etc. microalgae 

are also excellent candidates for starch accumulation and 
production (feedstock for bioplastics production).  These 
factors have been reviewed recently in Chisti (2007), 
Schenk et al., (2008) and Šoštarič et al., (2012). 

Pulz and Gross (2004) reported that successful algal 
biotechnology mainly depends on culling the right alga 
with pertinent properties for categorical culture conditions 
and products. Large scale production of microalgal 
biomass therefore requires species, which also can 
tolerant of a wide range of conditions. Thus, microalgae 
can be harvested within a short span of time as compared 
to plants and crops and hence can meet the increasing 
demand of feedstock (Harun et al., 2010). Cultivation and 
environmental conditions are very important factors in 
microalgae growth and intracellular substance 
accumulation (Bartual and Gálvez, 2002; Yoon et al., 
2008). The main motive of this study is to screen the 
proximate and biochemical analysis in marine and 
freshwater microalgae.  
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MATERIALS AND METHODS 

Culture collection 

Five marine and 5 freshwater microalgae cultures were 
obtained from Microalgal Culture Laboratory of School of 
Biological Sciences and School of Industrial Technology, 
Universiti Sains Malaysia. For freshwater microalgae 
cultures there are Spirulina sp., Ankistrodesmus sp., 
Microcystis sp., Chlorococcum sp., and Chlorella vulgaris. 
While for marine microalgae cultures there are Chlorella 
salina, Tetraselmis sp., Isochrysismaritima, 
Nitzschiapanduriformis and Naviculadistans.  

Strain activation and inoculum preparation 

Three types of media were used which are BG-11 (Stanier 
et al., 1971), Zarrouk and Conway/Walne’s (Walne, 1970) 
medium. Each microalga from stock solution will be grown 
in 100 mL of media under illumination at 258 Lux (3.612 
µmol photons m-2s-1) by heatless white fluorescence lights 
with 12 h dark:12 h light at room temperature of 28±2 °C.  

Screening and growth profile of microalgae 

The resulting cultures with initial biomass concentration in 
the range of 0.50-0.60 OD (at the measurement 680 nm) 
was used as inoculums by transferring 10% of the 
inoculums to freshly prepared 900 mL of media. The 
strains were sampled every day for determination of cell 
growth by spectrophotometer at OD680 for 20 days. After 
20 days of cultivation, algal biomass was determined as 
total dry weight. The entire marine and freshwater 
microalgae cultures been harvested at the late 
exponential phase by spun at 6,000 rpm for 10 min (4 °C) 
(Dragone et al., 2011). After that pellet obtained was 
washed twice with sterile distilled water and sent for 
freeze drying before analysed for moist and ash, starch, 
protein, lipid and carbohydrates content. 
 
Moist and ash determination  
 
Moist and ash were determined using the method 
described in NREL laboratory analytical procedures 
(Laurens, 2015). Crucibles pre-conditioned in the 575 °C 
muffle furnace overnight to remove any combustible 
contaminants. After conditioning is complete, crucibles 
removed from the 575 °C furnace and cool to room 
temperature in desiccators (under vacuum). Weight of 
each crucibles been recorded. About 50 ± 5 mg of 
prepared algal biomass was weighed out into the pre-
weighed crucible. The weight of the crucible and sample 
were recorded. The samples were placed into a 
convection drying oven at 60 °C ± 1 °C for 18 h. 
Thereafter, the samples were taken out from oven and 
leaved in desiccators to cool to room temperature. The 
weight was recorded. The percentage moisture on a dry 
weight basis was calculated as follows equation 1: 
 

 
Equation 1 (Laurens, 2015) 

 
Same sample that been used for the ash analysis. 

Using an ash burner and a clay triangle on a stand, the 
crucibles containing the oven-dried sample heated until 
smoke appears. The smoke immediately ignited and 
allows the sample to burn until no more smoke or flame 
appears. The crucible was allowed to cool on a suitable 
surface before placing in muffle furnace. The cooled 
samples were placed in the muffle furnace at 
approximately 575 °C ± 25 °C for 24 h. The pre-ignited 
samples handled with care while placing them in or taking 
out to avoid sample loss. The ashed samples were 
removed from muffle furnace and allow cooling to room 
temperature in desiccators. The crucible and ashed 
samples weighed and the weight was recorded. The 
percentage of ash on a dry weight basis calculated as 
follows equation 2: 

 

 
Equation 2 (Laurens, 2015) 

 
Protein determination 
 
Protein extraction 
 
Protein extraction has been done using method by Price 
(1965) with modifications. 5 mg of freeze-dried microalgae 
material was weighed out. The analysis was carried out in 
triplicate. Samples were resuspended by vortexing in 0.2 
mL 24% (w/v) TCA. Homogenates were incubated in a 
water bath at 95 °C for 15 min in an Eppendorf tubes and 
allowed to cool to room temperature. The samples were 
diluted to 6% (w/v) with the addition of 0.6 mL deionized 
water. The homogenates were centrifuged at 15,000 rpm 
for 20 min at 4 °C and their supernatants discarded. The 
pellets were resuspended in 0.5 mL Lowry Reagent by 
repeated pipetting and incubated at 55 °C for 3 h. The 
samples cooled to room temperature, centrifuge at 15,000 
rpm for 20 min room temperature and the supernatant 
frozen at –20 °C for further analysis. 
 
Protein quantification 
 
Method of Lowry et al., (1951) as modified by Price (1965) 
been used for protein quantification. 50 µL of the protein 
(supernatant) was added to 1.5 mL centrifuge tubes in 
triplicate, followed by 950 µL of Lowry Reagent followed 
by immediate mixing by inverting the tubes. Samples were 
left in room temperature for 10 min. Then, 100 µL of the 
diluted Folin-Ciocalteu phenol reagent was added to each 
tube and mixed by vortex. Samples incubated at room 
temperature for 30 min. After incubation, the absorbance 
of each sample was read at 600 nm (Findlay, 1990; 
Walker, 2002). The percent protein on a dry weight basis 
calculated as follows equation 3: 
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Equation 3 (Findlay, 1990; Walker, 2002) 

 
Lipid determination  
 
Lipid contains determined by using method by Bligh and 
Dyer (1959). The weight of 5 mL glass vial been taken 
followed by 50 mg dry algal sample weighed and added. 
Volume of 1.5 mL of CHCl3/MeOH (1:2, v/v) was added 
into the vial and vortexes it vigorously for 5 min. Volume of 
0.5 mL of CHCl3 was added and the vial vortexes again 
for 5 min. Then 0.5 mL of H2O was added into vial and 
vortexes it for 5 min. The vial was centrifuged at 3000 rpm 
for 10 min, and the lower organic layer was transferred to 
a new glass vial and the solvent was evaporated in a fume 
hood for 24 h. The vial of extracted lipids was dried in a 
freeze dryer, and the vial was weighed. 
 
Starch determination 
 
The starch contents of microalgae cultures were 
determined using the total starch assay procedure from 
Megazyme (2009). 10 mg dry samples weighed in 
triplicate into 15 mL centrifuge tubes. Twenty µL aqueous 
ethanol (80% v/v) and 0.2 mL Dimethyl sulfoxide (DMSO) 
added and vortex. After vortexing, the tubes placed in a 
boiling water bath for 5 min. Two hundred ninety µL 3-(N-
morpholino) propane sulfonic acid (MOPS) and 10 μL 
thermostable α-amylase added, mixed well by vortexing, 
and the tubes incubated in a boiling water bath for 12 min. 
Four hundred μL sodium acetate buffer and 10 μL 
amyloglucosidase added (vigorously vortex) and the tubes 
incubated at 50 °C for 30 min. Distilled water added to 
adjust sample volumes to 10 mL. Mixed completely by 
using vortex, then spin at 3000 rpm for 10 min. One 
hundred µL of the supernatants transferred to glass vials. 
Three mL glucose oxidase/peroxidase (GOPOD) reagent 
added, followed by incubation at 50 °C for 20 min. D-
glucose controls (contained 100 µl D-glucose standard 
solution and 3 mL GOPOD reagent) and reagent blanks 
(contained 100 µl water and 3 mL GOPOD reagent) and 
the samples incubated at 50 °C for 20 min. The 
absorbances of the samples were taken using 
spectrophotometer at 510 nm against reagent blank. The 
starch content calculated as per the equation 4:  
 

 
 

Equation 4 (Megazyme, 2009) 
where, 
∆A = Absorbance (reaction) read against the reagent 
blank 
F = 100 µg of D-glucose/absorbance for 100 µg of glucose 
(conversion from absorbance to µg) 
FV = Final volume (10-100 mL) 
W = Weight (mg) of sample used 
 
 

Carbohydrates determination  
 
For carbohydrates determination, 10 mg of freeze dried 
sample was weighed in a 15 mL centrifuge tube. Then, 
0.5 mL of concentrated acetic acid was added and 
incubated in an 85 °C water bath for 15 min. A volume of 
10 mL of acetone was added. The sample was then 
centrifuged at 4000 rpm for 10 min (25 °C). The upper 
layer was discarded into a waste jar. A volume of 5 mL of 
4 M Trifluoroacetic acid (TFA) was added to the 
decolorized algal sample, incubated in a boiling water 
bath for 4 h. During incubating, the sample tube was 
vortexed every 30 min. After 4 h of incubation, distilled 
water was added to make up a total volume of 10 mL. A 
volume of 20 μL of hydrolysed sample was pipette into a 
glass vial and was placed in a cold water. A volume of 0.9 
mL sulfuric acid–phenol reagent was added to the tube 
and vortex. The tube was incubated in a boiling water bath 
for 20 min. After that, the tube was placed in an ice bath 
until the sample is cool. The absorbance of the samples 
was read using the spectrophotometer at 490 nm against 
reagent blank (Dubois et al., 1951, 1956; Grandy et al., 
2000; Laurentin and Edwards, 2003). The carbohydrates 
content was calculated as per the equation 5: 
 

 
Equation 5 (Laurentin and Edwards, 2003) 

 
Statistical analysis 
 
Statistical analyses were carried out using the Statistical 
Package for the Social Science (SPSS) Version 22 for 
analyses of variance (ANOVA). Significance was defined 
at P<0.05. Three replications were performed for all 
experiments and analyses. 
 
RESULTS AND DISCCUSIONS 
 
Growth profile of microalgae 
 
Growth profile been studied for all ten strains. The growth 
curve for all ten analysed strains were shown in Figures 
1a and 1b. Almost all freshwater microalgae cultures 
reached at the late exponential on 9th day except for 
Spirulina sp. on 10th day. On the other hand, for marine 
microalgae cultures, C. salina, I. maritima and Tetraselmis 
sp. reached the late exponential phase on 7th day and 
followed by both diatoms cultures (N. panduriformis and 
N.distans) reaches late exponential on 9th day. Even 
though, the growth rate for marine microalgae is much 
faster than freshwater microalgae, but the biomass is still 
lower than freshwater cultures (high density growth). This 
can be seen when C. vulgaris and Microcystis sp. possess 
similar highest dried cell weight of 0.23g/L followed by 
Spirulina sp. of 0.20 g/L (Table 1). The dried cell weight 
obtained by the marine microalgae were below 0.12 g/L 
with the lowest was shown by I. maritima (0.06 g/L). 
Overall lower biomass detected in this present study may 
due to the cultivation conditions at current stage 
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(Screening) are not suitable. Microalgae completely rely 
on cultivation conditions on determining growth 
characteristics and composition. There are four major 
types of cultivation conditions for microalgae which are 
photoautotrophic, heterotrophic, mixotrophic and 
photoheterotrophic cultivation (Chojnacka and Marquez-
Rocha, 2004) However, the fastest biomass growth can 
be enhanced at the optimum conditions. 
 
Moisture and ash determination 
 
Table 1: Summary of moist, ash and dry weight analysis.  
 
Cultures Microalgae 

cultures 
(F:Freshwater, 
M:Marine) 

% Ash  Dry 
weight 
(g/L) 

Spirulina sp. F 30.82±1.71 0.20 
Ankistrodesmus sp. F 61.45±29.36 0.17 
Microcystis sp. F 85.33±0.35 0.23 
Chlorella vulgaris F 57.48±3.15 0.23 
Chlorococcum sp. F 42.30±9.87 0.14 
Chlorella salina M 41.03±3.45 0.08 
Tetraselmis sp. M 29.92±3.83 0.07 
Isochrysis maritima M 5.80±1.59 0.06 
Nitzschia 
panduriformis 

M 27.25±0.62 0.07 

Navicula distans M 25.31±0.85 0.11 

*Data reported as means ± standard deviation of triplicates. 

 
As shown in Table 1, freshwater green microalgae contain 
much higher ash than marine green, diatoms and brown 
microalgae. Almost all the microalgae cultures rich in ash 
contents (except for I. maritima), ranging from 5.80% to 
85.33%. Microcystis sp. contained highest percentage of 

ash contents, and highest biomass. The higher contains of 
ash in freshwater green microalgae results in its high 
biomass. Many studies been carried out on discovering 
characteristics of various species of microalgae. Green 
microalgae widely being used for the research and the 
results clearly showed that about 20% DW of the 
microalgae biomass was left after slow pyrolysis and 
became char (Wu et al., 2012; Sanchez-Silva et al., 
2013). Oxidation of the integrated minerals in microalgae 
into mineral oxides in the open-to-air furnace is the most 
likely contributor to these significant differences.  
 
Protein determination 
 
Testing for protein is necessary for clear picture on 
microalgae composition. The results obtained indicated 
that all the cultures have <1% protein content (Figure 2). 
Nevertheless, statistical analysis indicated that the protein 
content obtained by C. vulgaris (0.92%) was significantly 
higher (P<0.05) compared with all the tested microalgae 
strains. On the other hand, Microcystis sp. and 
Chlorococcum sp. showed no protein at all. This may due 
to the protein content was too low to be detected by the 
assay method. On top of that, it might due to; several 
substances may interfere with both the Lowry and 
Bradford method, such as phenol and phenolases (Mattoo 
et al., 1987), glusamine and detergents (Pterson, 1979) 
and flavonoids (Compton and Jones, 1985). These 
substances could affect analyses by either increasing the 
absorbance (overestimating values), or decreasing the 
measurements by in inhibiting the action of specific 
reagents (Clayton et al., 1988). 

 

 
Figure 1a: Growth profile of five species of freshwater microalgae. (i) Microcystis sp. (ii) Spirulina sp. (iii) Chlorella 
vulgaris (iv) Chlorococcum sp. (v) Ankistrodesmus sp.  t1 indicates at the early of exponential phase follow by t2 is late 
exponential phase. Data was reported as means of triplicates.  
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 Figure 1b: Growth curves of five species of marine microalgae. (i) Isochrysis maritima (ii) Navicula distans (iii) Nitzschia 
panduriformis (iv) Tetraselmis sp. (v) Chlorella salina. t1 indicates at the early of exponential phase follow by t2 is late 
exponential phase. Data was reported as means of triplicates. 
 

 
 
Figure 2: Protein contents (Percentage, %) of marine and 
freshwater microalgae culture. Data was reported as 
means of triplicates. Standard deviation has been 
removed for clearer bar chart. Means with the same letter 
indicated no significantly difference at 5% level of 
probability by Duncan Test.*1: Spirulina sp., 2: 
Ankistrodesmus sp., 3: Microcystis sp., 4: Chlorococcum 
sp., 5: Chlorella vulgaris, 6: Isochrysis maritima, 7: 
Chlorella salina, 8: Tetraselmis sp., 9: Nitzschia 
panduriformis, 10: Navicula distans. 
 
Lipid determination 
 
Although the lipid content detected by Chlorella vulgaris 
and Microcystis sp. are significantly higher (P<0.05) 
compared with others tested microalgae strains. This is 
due to fast growing species of algae contain lower 

amounts of lipids, whereas cells accumulating lipids grow 
slower (Xiong et al., 2009). In this current research, all the 
strains contain less than 1% of lipid (Figure 3). This result 
was expected because most of the biochemical 
compounds, except for protein, increased when the 
culture aged, especially carbohydrate and lipid (Fidalgo et 
al., 1998; Lin et al., 2007; Chiu et al., 2009). Furthermore, 
phytoplankton may physiologically acclimate in response 
to variation in temperature, changing their biochemical 
composition or adjusting their membrane lipid to increase 
their capacity to grow or survive (Jiang et al., 2014). 
Besides that, data presented in the literature show that the 
lipid content in marine algae are less than 4% of the dry 
weight depending on the species (Herbreteau et al., 1997; 
McDermind and Stuercke, 2003). Previous studies show 
that nutrient limitations and environmental stress such as 
temperature manipulation, pH stress, different light 
intensity and high salinity were shown to induce the lipid 
accumulation in microalgae (Kalpesh et al., 2012; 
Rattanapoltee and Kaewkannetra, 2013). 
 
Starch determination 
 
Accumulation of starch can be induced by nitrogen 
reduction (Dragone et al., 2011), sulphur reduction, high 
light intensity (Brányiková et al., 2011) or a high CO2 

concentration (Izumo et al., 2007). The marine 
Chlorophyta phylum which is C. salina shows higher 
percentage (4.92%) and the productivity is 0.392 g/L of 
starch among all other tested strains (P<0.05), followed by 
freshwater Cyanobacteria microalgae Spirulina sp. 
(2.58%) and the productivity is 0.516 g/L (Figure 4). At this 
screening stage, none of the optimization tests have been 
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conducted. These two cultures were selected for further 
studied on starch accumulation at the stress stage. C. 
salina is significantly different from all other cultures as it 
does not appear in any subset together with any other 
cultures. These cultures been selected for further 
optimization based on SPSS analysis data.  
 

 
 
Figure: 3 Lipid contents (percentage, %) of marine and 
freshwater microalgae culture. Data was reported as 
means of triplicates.  Standard deviation has been 
removed for clearer bar chart. Means with the same letter 
indicated no significantly difference at 5% level of 
probability by Duncan Test.*1: Spirulina sp., 2: 
Ankistrodesmus sp., 3: Microcystis sp., 4: Chlorococcum 
sp., 5: Chlorella vulgaris, 6: Isochrysis maritima, 7: 
Chlorella salina, 8: Tetraselmis sp., 9: Nitzschia 
panduriformis, 10: Navicula distans. 
 
Carbohydrates determination 
 
In this experiment, carbohydrates content obtained by 
Tetraselmis sp. are significantly different (P<0.05) 
compared with all the tested microalgae cultures except of 
Chlorella vulgaris (Figure 5). It is interesting to be found 
that, the relationship between growth rate and high 
carbohydrates correlated. Based on growth profiling, 
Tetraselmis sp. shows fastest growth rate, and in terms of 
carbohydrates accumulation carries highest percentage of 
carbohydrates compare to other nine other cultures.  In 
general, the carbohydrate content detected by freshwater 
and marine microalgae are not varied differently. 
Tetraselmis sp. (marine water culture) contains the 
highest carbohydrates (9.58%) followed by C. vulgaris 
(8.20%) and the least is shown by Microcystis sp. 
(freshwater culture) with carbohydrate content of 2.27%. 
The values vary due to environmental conditions and 
usage of different media composition (location of isolates 
varies). Previous research shows that, accumulation of 
carbohydrates will be higher in microalgae is through 
reduction of nitrogen and phosphorus in the growth 
medium (Dragone et al., 2011; Behrens et al., 1989; 
Brányiková et al., 2011). 
 

 
 
Figure 4: Starch contents (Percentage, %) of marine and 
freshwater microalgae cultures. Data was reported as 
means of triplicates. Standard deviation has been 
removed for clearer bar chart. Means with the same letter 
indicated no significantly difference at 5% level of 
probability by Duncan Test.*1: Spirulina sp., 2: 
Ankistrodesmus sp., 3: Microcystis sp., 4: Chlorococcum 
sp., 5: Chlorella vulgaris, 6: Isochrysis maritima, 7: 
Chlorella salina, 8: Tetraselmis sp., 9: Nitzschia 
panduriformis, 10: Navicula distans. 
 

 

Figure 5 : Carbohydrates contents (percentage, %) of 
marine and freshwater microalgae cultures. Data was 
reported as means of triplicates. Standard deviation has 
been removed for clearer bar chart. Means with the same 
letter indicated no significantly difference at 5% level of 
probability by Duncan Test.*1: Spirulina sp., 2: 
Ankistrodesmus sp., 3: Microcystis sp., 4: Chlorococcum 
sp., 5: Chlorella vulgaris,6: Isochrysis maritima, 7: 
Chlorella salina, 8: Tetraselmis sp., 9: Nitzschia 
panduriformis, 10: Navicula distans. 
 
CONCLUSIONS 
 
The overall aims of this research are to screen, 
determined and optimized the cultivation conditions of 
microalgae for high starch production and accumulation. 
Our data presented might low compare to literatures, 
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however for ash, protein, carbohydrates, lipid and starch 
contents may also be reliant of seasonal period, 
geographical location and environmental conditions. The 
composition variety of the algal content was also reported 
for various species (Khotimchenko et al., 2002; Renaud 
and Luong-Van, 2006). In present stage of study, S. 
platensis and C. salina been chose for further study in 
order to enhance starch production. Optimization will be 
done on physical factors and chemical factors (Nutrient 
availability). So that high starch content will be obtained 
and consequently the overall cost for starch production 
will be reduced. With that it can directly lower the cost for 
bioplastics production.  
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