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ABSTRACT

This study was performed to assess the inconsistency of lesion quantification in standardised uptake value (SUV) 
[18F]-FDG between Ellipse (2-Dimensional) and Ellipsoid (3-Dimensional) quantification techniques by using PET/
CT image quality phantom. Reconstructed images of PET/CT ACR phantom was used to assess the quantification of 
SUV (SUV

max
, SUV

avg
 and SUV

min
) on selected regions of interest. Statistical analysis of paired t-test was performed to 

compare the lesion quantification in SUV [18F]-FDG between 2D and 3D techniques. The quantification techniques 
were consistently similar of assessment between 2D SUV

max
 and 3D SUV

max
 at 12mm of ROI lesion with [(0.00 ± 

0.02), t(29)=-0.48, p>0.05]. However, the rest of quantification techniques of 2D SUV
max

, 3D SUV
max

, 2D SUV
avg

, 3D 
SUV

avg
,  2D SUV

min
 and 3D SUV

min
, results shown  significant inconsistency since the p<0.05. This phantom study 

has proven that there were inconsistency of lesion quantitative assessment in 2D SUV and 3D SUV quantification 
techniques for [18F]-FDG PET/CT.
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INTRODUCTION

Positron emission tomography/computed tomography 
(PET/CT) for cancer imaging using fluorine-18 
fluorodeoxyglucose [18F]-FDG is widely used in oncology 
cases (1). [18F]-FDG acts as a useful molecular marker 
for many cancer cases such as follicular lymphoma (2), 
breast cancer (3), pharynx (4) and others.  Thus, the role of 
PET/CT using [18F]-FDG is getting significant in oncology 
cases especially in Malaysia (5). Nevertheless, the use of 
PET/CT in Malaysia is mandatory to comply the quality 
control (QC) which is verified by an approved medical 
physicist before subjecting PET/CT examination to the 
patient as clinical procedure (6). QC process of PET/
CT used activated phantom to verify the quantification 
accuracy of the scanner system. Quantification of 
technical procedure (using phantom) or clinical 
procedure (patient) depends on quantification value 
called standardised uptake value (SUV). Quantification 
of SUV on phantom can be used as reference of SUV 

standard because phantom has fixed vials compare to 
human changed metabolism.

SUV is a method for measuring the amount rate of [18F]-
FDG accumulation in tumour tissue. PET/CT scanners 
are built to measure in vivo radioactivity concentration 
(Bq/mL). Quantification of SUV acts as an important 
parameter of semi-quantitative measurement of glucose 
metabolism to evaluate uptake value through PET/CT 
images (7–9). SUV is obtained automatically on most 
modern-day PET/CT scanners and measures normalized 
radioactivity concentration as follows:

SUV=  activity concentration in tissue
               injected activity/ body size

SUV
avg

 and SUV
max

 of a target lesion or a region of 
interest are the two most common ways of reporting 
SUV (10). However, PET/CT SUV quantification depends 
on the technical errors such as incorrect units, varying 
times from injection to scanning, dose infiltration, and 
image processing such as iterations or filters (7,9–11). 
Researchers mutually concurred the significance of 
quantification variation factors are related to the amount 
of injected [18F]-FDG and the patient size (7). Due to 
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inconsistent and non-optimised image analysis, a group 
of European researchers has reported the technical 
error as a key factor to variation in the measured SUV 
(9, 11). In such cases, SUV harmonisation would be 
needed to minimise inter-scanner issue. Current studies 
reported by fellow researchers served as an on-going 
effort towards standardisation of FDG-PET imaging to 
allow comparison variability in quantitative SUV (1, 12). 
Therefore, this study was performed to investigate the 
inconsistency quantification analysis using 2D and 3D 
quantification techniques using phantom accredited by 
American College of Radiology. 

MATERIALS AND METHODS

PET phantom Flangeless Esser, USA was used in this 
investigation as image quality phantom. The phantom 
vials (25mm, 16mm, 12mm and 8mm) were filled and 
activated with 0.35 millicuries (mCi) [18F]-FDG. Next, 
the phantom container was filled and activated with 
0.83 mCi [18F]-FDG to serve as background radioactivity. 
PET/CT scanner (Biograph 64, Siemens, USA) was used 
to scan the phantom. The phantom was carefully aligned 
so that it was parallel to the patient’s table (Fig. 1). For 
the acquisition, the whole body protocol was used 
with the same settings that has been used for routine 
clinical procedures at this institution. The phantom was 
scanned using these acquisition parameters; time per 
bed position = 2 minutes, number of bed position = 1, 
matrix size = 256 pixels, zoom factor = 1, reconstruction 
type = True X, iterations = 3, subsets = 21, processing 
filter = Gaussian, FWHM = 4 mm and slice thickness = 
5 mm. PET/CT images then, were imported to Leonardo 
SIEMENS workstation. DICOM images were processed. 

The DICOM headers provided most parameters needed 
to process images and to compute SUV. Leonardo 
SIEMENS; SYNGO syngo MMWP VE31A, syngo VE32B 
WinNT 5.2, Service Pack 2, COEM VE10D 64Bit 
was used for the quantification of [18F]-FDG PET/CT 
images. The standard ROIs were placed on the central 
slice through the vials to obtain SUV measurements. A 
qualified medical physicist has conducted a quantitative 
analysis of the SUV supported by a radiographer. A reader 
for multiple readings. The quantification of SUV were 
performed with [18F]-FDG using Ellipse (2-dimensional) 
and Ellipsoid (3-dimensional) quantification techniques. 

Statistical analysis was conducted using IBM Statistical 
Package for Social Science (SPSS) Statistic for Windows, 
latest version 2020 (IBM Corp., Armonk, N.Y.,USA). 
Paired t-test was performed to compare the consistency 
lesion quantification in SUV 18F-FDG between 2D and 
3D techniques.

RESULTS AND DISCUSSION

Comparison of quantitative assessment between 
SUVmax, SUVavg and SUVmin in phantom lesion
Data was collected from the sample of 30 repeated 
SUV measurements of phantom lesion which were 2D 
SUV

max
, 3D SUV

max
, 2D SUV

avg
, 3D SUV

avg
, 2D SUV

min
 

and 3D SUV
min

 as illustrated in Fig. 2. The result of 
SUV measurements for 2D and 3D were presented in 
Fig. 3. We demonstrated the result into three separate 
line graphs to show the differences of quantitative 
assessment between 2D SUV and 3D SUV techniques 
(SUV

max
, SUV

avg
 and SUV

min
).

We described the result of SUV
max

 as presented in Fig. 
3a. There was similarity reading and pattern between 
2D SUV

max
 and 3D SUV

max
 as shown at 12mm of ROI 

lesion. Both of SUV
max

 mean was 3.11 ± 0.01. However, 
there was an inconsistent pattern between 2D SUV

max
 

(2.88 ± 0.01) and 3D SUV
max

 (3.74 ± 0.01) at 16mm of 
ROI lesion.  Additionally at 25mm of ROI lesion, 2D 
SUV

max
 and 3D SUV

max
 were 3.07 ± 0.01 and 4.00 ± 

0.01 respectively. This result highlights the difference of 
quantitative assessment value between 2D SUV

max
 and 

3D SUV
max

 techniques if ROI >12 mm.

For SUV
avg

, the graph shown there was close to 
homogeneous pattern between 2D SUV

avg
 and 3D 

Figure 1: ACR image quality phantom was scanned using PET/
CT Siemens Biograph 64 scanner. The phantom was activated 
with [18F]-FDG at selected region-of-interest (ROI) for quan-
tification assessment of 25 mm, 16 mm, 12 mm, 8 mm and 
background. 

Figure 2: Transversal images of phantom. The 
quantitative assessment using Ellipse (2D) quanti-
fication technique and the quantitative assessment 
using Ellipsoid (3D) quantification technique.
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SUV
avg

 quantitative assessment as demonstrated in Fig. 
3b.  At 25mm of ROI lesion, 2D SUV

avg
 and 3D SUV

avg
 

were 2.41 ± 0.02 and 2.48 ± 0.01 respectively while at 
background of ROI lesion, 2D SUV

avg
 and 3D SUV

avg
 

were 1.14 ± 0.01 and 1.01 ± 0.02 respectively.

 A non-identical graph pattern of quantitative assessment 
between 2D SUV

min
 and 3D SUV

min
 was also discovered. 

The highest difference shown at background of ROI 
lesion with the mean of 2D SUV

min
 and SUV

min
 were 

0.72 ± 0.01 and 0.10 ± 0.01 respectively as presented 
in Fig. 3c.

Based on the pattern of displayed in the illustrated 
graphs, 2D SUV

avg
 and 3D SUV

avg
 was found to be the 

more favourable quantification techniques as they are 
the most stable of all ROIs compared to quantitative 
assessments of SUV

min
 and SUV

max
. However, the 

statistical test should be done beforehand to determine 
whether SUV

avg
 is indeed the best choice of all options.

Inconsistency of Quantitative Assessment between 
2D and 3D quantification techniques in parameter of 
SUVmax, SUVavg and SUVmin

A paired t-test was run on the sample of 30 repeated SUV 

measurements (SUV
max

, SUV
avg

 and SUV
min

) of phantom 
lesion to determine whether there was a statistically 
significant difference of lesion quantification in SUV 
[18F]-FDG between 2D and 3D techniques. The statistic 
test was run on the Pair 1 to Pair 15 as illustrated in 
Table I.

Figure 3: The differences of uptake value for 2D and 3D quan-
tification techniques which are (a) SUVmax, (b) SUVavg and (c) 
SUVmin

Table I: Result of statistical paired t-test analysis of quantitative 
assessment in 2D and 3D SUV quantification techniques using 
parameter of SUVavg, SUVmax and SUVmin

SUV 
Assessment 
Parameter

Pair
Region of 
Interest

2D
Mean ± SD

3D
Mean ± SD

p-value 
(paired t-test)

SUVavg Pair 1 25 mm 2.41 ± 0.02 2.48 ± 0.01 p<0.05 (0.00)

Pair 2 16 mm 1.75 ± 0.02 1.79 ± 0.01 p<0.05 (0.00)

Pair 3 12 mm 1.50 ± 0.01 1.47 ± 0.01 p<0.05 (0.00)

Pair 4 8 mm 1.24 ± 0.01 1.23 ± 0.01 p<0.05 (0.02)

Pair 5 Background 1.14 ± 0.01 1.01 ± 0.02 p<0.05 (0.00)

SUVmax Pair 6 25 mm 3.07 ± 0.01 4.00 ± 0.01 p<0.05 (0.00)

Pair 7 16 mm 2.88 ± 0.01 3.74 ± 0.01 p<0.05 (0.00)

Pair 8 12 mm 3.11 ± 0.01 3.11 ± 0.01 p>0.05 (0.63) 

Pair 9 8 mm 1.95 ± 0.01 1.99 ± 0.02 p<0.05 (0.00)

Pair 10 Background 1.85 ± 0.01 2.09 ± 0.01 p<0.05 (0.00)

SUVmin Pair 11 25 mm 1.07 ± 0.01 0.97 ± 0.01 p<0.05 (0.00)

Pair 12 16 mm 0.87 ± 0.01 0.77 ± 0.01 p<0.05 (0.00)

Pair 13 12 mm 0.95 ± 0.01 0.74 ± 0.01 p<0.05 (0.00)

Pair 14 8 mm 0.82 ± 0.02 0.69 ± 0.02 p<0.05 (0.00)

Pair 15 Background 0.72 ± 0.01 0.10 ± 0.01 p<0.05 (0.00)

For SUV
avg

, quantitative assessment between 2D SUV
avg

 
and 3D SUV

avg
 was consistently different for Pair 1 

to Pair 5; result Pair 1 [(-0.08 ± 0.02), t(29)=-20.68, 
p<0.05]; Pair 2 [(-0.04 ± 0.02), t(29)=-10.37, p<0.05]; 
Pair 3 [(0.03 ± 0.02), t(29)=-10.02, p<0.05]; Pair 4[(0.01 
± 0.02), t(29)=2.51, p<0.05]; Pair 5 [(0.13 ± 0.02), 
t(29)=43.46, p<0.05].

Additionally for SUV
max

, quantitative assessment 
between 2D SUV

max
 and 3D SUV

max
 was inconsistent 

for Pair 6 [(-0.94 ± 0.02), t(29)=-285.36, p<0.05], Pair 
7 [(-0.86 ± 0.02), t(29)=-219.41, p<0.05], Pair 9 [(-
0.04 ± 0.02), t(29)=-9.05, p<0.05] and Pair 10 [(-0.24 
± 0.02), t(29)=--62.42, p<0.05]. The only exception of 
consistency occurred for Pair 8. Pair 8 shown a definitive 
constant result  between 2D SUV

max
 and 3D SUV

max
 at 

12mm of ROI lesion with only [(0.00 ± 0.02), t(29)=-
0.48, p>0.05].

Next for SUV
min

, quantitative assessment between 2D 
SUV

min
 and 3D SUV

min
 was totally difference for all 

pairs in this group since the p-values were significant 
<0.05. Pair 11 [0.10 ± 0.02), t(29)=32.57, p<0.05], 
Pair 12  [(0.10 ± 0.02), t(29)=29.21, p<0.05], Pair 13  
[(0.20 ± 0.02), t(29)=63.01, p<0.05], Pair 14 [(0.13 ± 
0.02), t(29)=34.18, p<0.05] and Pair 15 [(0.63 ± 0.02), 
t(29)=197.73, p<0.05]. 

These findings suggested SUV
max

 at 12mm of ROI 
lesion will provide a consistent quantitative assessment 
between 2D SUV

max
 and 3D SUV

max
 as simulated 
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quantitative assessment (n=30). However, combination 
of all data collection comes out to approximately n=450 
(3 different SUV x 5 different ROI x 30 quantitative 
assessment). Furthermore, this study focuses on single 
reader with multiple readings. We cannot fulfil the inter-
reader agreement measurement of image quality score as 
was required for the Cohen’s kappa score. Moreover, the 
procedure of inter-reader agreement has been studied to 
minimize the variation of SUV among the readers (15). 
Perhaps, the agreement between the readers would be 
an exciting endeavour for our next study. 

Another limitation we faced was null comparison 
between current phantom study and clinical study. In 
clinical study, we can validate the homogenous phantom 
with heterogeneous organs. We recommended the 
improvements to the phantom design to make it more 
heterogeneous to mimic the actual clinical conditions. 
For example, this is the case for development of 3D organ 
phantom which is homogenous with real human organs 
(16). Through this suggestion of improvement of future 
study, we could suggest all PET/CT cases reporters to 
harmonise and standardise the quantification parameter 
by justifying 2D SUV or 3D SUV quantification 
techniques. This will secure the intra reports of patient’s 
tumour assessment in each PET/CT institution.

Overall, further investigation is needed to study the SUV 
[18F]-FDG comparison and harmonisation quantitative 
assessments. We believe further investigation will lead to 
better consistency and standardised lesion quantification 
of [18F]-FDG PET/CT case. In the future, this could open 
opportunities for new pathway of medical physics and 
molecular imaging field studies in Malaysia. 
 
CONCLUSION

In conclusion, the phantom study has proven that there 
were inconsistence of lesion quantitative assessment 
in 2D SUV and 3D SUV quantification techniques for 
[18F]-FDG PET/CT using parameter of SUV

max
, SUV

avg
 

and SUV
min

. Future investigations are necessary to 
further support the discussion we have drawn from this 
study as this is a desirable step for future work regarding 
niche of phantom study.  
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