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ABSTRACT

Introduction: Liver cancer is among the main leading cause of mortality in Malaysia and the world. Therefore, there is 
an urgent need to understand the complex mechanisms and pathways involved in liver cancer. Methods: Microarray 
datasets GSE84402, GSE60502, GSE29721 and GSE19665 were downloaded from GEO database. The datasets were 
normalised and differentially expressed genes (DEGs) were calculated using GeneSpring software. GO and KEGG 
pathway enrichment analyses were then performed using DAVID. Finally, Cytoscape stringApp plugin was utilised to 
construct a protein-protein interaction (PPI) network. Results: A total of 1382, 714, 1038 and 1828 DEGs satisfying p 
value cut-off 0.01 and fold change cut-off 2.0 are identified from each dataset. 412 DEGs appeared in at least three 
datasets, consisting of 167 up-regulated and 245 down-regulated genes. These genes are most significantly enriched 
in terms related to cell division and mitotic nuclear division. Construction of PPI network produced a network with 
275 nodes and 2157 edges with confidence score 0.7. Topological analysis identified CDK1, TOP2A and NDC80 
as key genes. MCODE plugin extracted five modules from the network with mitotic cell cycle process being the 
most enriched term in module 1. Meanwhile, platelet degranulation, epoxygenase P450 pathway, cellular response 
to zinc ion and complement and coagulation cascade are the terms enriched in module 2, 3, 4 and 5. Conclusion: 
The key genes and pathways identified from this study provide information on the molecular mechanism underlying 
liver cancer to increase our understanding regarding liver cancer development and progression at molecular level.
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INTRODUCTION

Liver cancer or hepatocellular carcinoma (HCC) is 
among the leading cause of global cancer-related 
death (1). In Asia alone, at least 580,000 new cases are 
predicted to happen every year (2). This high rate of 
prevalence is caused by late diagnosis, which resulted 
in low survival rate of the patients. The most common 
molecular biomarkers for diagnosing liver cancer include 
alpha-fetoprotein (AFP), which is widely used since its 
discovery in the blood of liver cancer patients in 1964 
(3). However, AFP sensitivity and specificity are not fully 
optimal (4). The sensitivity declines to 25% in tumors 
that are 3 cm or less and in 80% of small hepatocellular 
carcinomas, the differential expression of AFP are 
almost undetected (5). The second most commonly used 
biomarker for liver cancer evaluation is Des-gamma-
carboxyprothrombin (DCP). DCP could provide the 

best sensitivity and specificity that enable physicians to 
differentiate if the patients have liver cancer or cirrhosis 
(6). The combination of AFP and DCP has been suggested 
in order to improve liver cancer detection (7). In term 
of molecular targeted therapy, sorafenib, a multikinase 
inhibitor is reported to be the most commonly used drug 
to treat liver cancer (8). Sorafenib targets a number of 
molecules involved in signal transduction like PDGFR 
and RAF and angiogenesis such as VEGFR(1-3) and 
PDGFR (8). Despite the positive outcome of sorafenib in 
term of patient’s survival, adverse events such as weight 
loss, fatigue, diarrhea and hand-food skin reaction are 
recorded among the users (8). Many other biomarkers 
and target molecules have been identified apart from 
the examples above. In fact, research in this field is 
still advancing in order to unravel novel detection and 
treatment methods that are reliable in term of specificity, 
sensitivity and safety.

The study of gene expression profiling is very useful in the 
discovery of potential biomarkers as well as therapeutics 
targets. This is achieved by comparing and analysing 
the genome-wide expression changes in health and 
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disease (9). One of the most powerful tools for analysing 
gene expression profiles at genome level is microarray 
technology (10). With this technology, researchers are 
able to study the function of genes and their products 
on a genome-wide basis. Microarray data generally 
could be used to uncover the mechanisms involved in 
the development of diseases, to categorise and group a 
disease for example differentiate many types of tumor, 
to monitor the patient’s response to therapy and to 
identify diagnostic or prognostic biomarkers of cancer 
(10). Although RNA-Seq approach proved to be better 
in detecting low abundance transcripts and having a 
broader dynamic range which allowed for the detection 
of more differentially expressed genes with higher fold-
change, microarray is still the most opted one due to its 
cheaper cost and less complex data analysis (11).

In this study, four microarray datasets were analysed to 
screen for differentially expressed genes (DEGs) between 
liver cancer tissues and their normal counterparts. 
Functional enrichment and network analysis were 
employed to identify key genes and pathways with 
the aim to produce a systematic perspective in order 
to understand the key players and mechanisms in the 
development and progression of liver cancer. 

MATERIALS AND METHODS

Selection and processing of microarray datasets
In this study, Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) was used to 
retrieve the microarray dataset. Selected datasets were 
normalised and analysed using GeneSpring software 
(Agilent Technologies) to identify the DEGs. Benjamini 
and Hochberg false discovery rate method was applied 
to fix the occurrence of false positive results. Genes that 
have adjusted p value <0.01 and fold change >2.0 were 
considered significant and selected for further analysis.

Acquiring intersection of DEGs in all datasets
To identify the overlapping DEGs that consistently 
appeared in all selected datasets, Venn diagram 
analysis was conducted using online web tools at http://
bioinformatics.psb.ugent.be/webtools /Venn/.

Functional and pathways enrichment analysis
The list of DEGs was submitted to Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID) database (https://david.ncifcrf.gov/) to identify 
the gene ontology (GO) terms covering biological 
process (BP), cellular component (CC) and molecular 
function (MF) domains and the pathways involved 
in liver cancer. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database was opted to map the 
datasets for biological interpretation. A p value <0.05 
was considered significant.

Construction of PPI network and analysis of modules
The interaction among DEGs was extracted from Search 

Tool for the Retrieval of Interacting Genes (STRING) 
database (12) with confidence score >0.7 and PPI 
network was constructed in Cytoscape ver3.6 (13). 
Then, the network was analysed using NetworkAnalyzer 
to identify the key genes in the network. Subnetworks 
or modules were extracted using MCODE plugin (14). 
The criteria for module selection were set at: nodes 
>5, score >5, degree cut-off=2, node score cut-off=0.2, 
max depth=100 and k-core=2. The GO and KEGG 
pathway enrichment analysis of each module were 
analysed using ClueGO plugin (15). The p value was 
calculated by right-side hypergeometric test followed 
by Benjamini-Hochberg multiple test correction. In this 
study, terms and pathways with adjusted p value <0.05 
was considered significant.

RESULTS

Microarray datasets
To search for the suitable datasets, the keyword ‘liver 
cancer’ is used as a query and the search is limited to 
species ‘Homo sapiens’ and type ‘expression profiling 
by array’ only. A total of 684 items appeared in the 
search results as of 11th December 2017. After a careful 
review, only five gene expression profiles: GSE84402 
(16), GSE64041 (17), GSE60502 (18), GSE29721 (19) 
and GSE19665 (20), which altogether contain 112 
liver carcinoma and 112 matched non-cancerous 
liver specimens from tissue biopsy, are selected for 
downstream analysis.

Differentially expressed genes
Analysis performed by GeneSpring software identified 
1382, 714, 1038 and 1828 DEGs satisfying p value cut-
off 0.01 and fold change cut-off 2.0 from GSE84402, 
GSE60502, GSE29721 and GSE19665, respectively. At 
this point, dataset GSE64041 did not give any significant 
DEGs and therefore is excluded in further analysis. The 
top 20 DEGs for each microarray datasets are tabulated 
in Table I. To screen for genes that have different 
expression in all datasets, the intersection of the DEGs 
is obtained by Venn analysis. A total of 412 genes are 
found to appear consistently in at least three datasets 
consisting of 167 up-regulated genes and 245 down-
regulated genes (Fig. 1). 

Enriched terms and pathways
The up-regulated genes are significantly enriched in 96 
GO-BP terms, 37 GO-CC terms, 32 GO-MF terms and 
9 KEGG pathways (p <0.05). On the other hand, the 
down-regulated genes are significantly enriched in 79 
GO-BP terms, 27 GO-CC terms, 42 GO-MF terms and 
22 KEGG pathways (p <0.05). The top five GO terms 
and top three pathways enriched in both up- and down-
regulated genes are tabulated in Table II.

PPI network analysis
The PPI constructed from 412 DEGs consist of 275 
nodes and 2157 edges (Fig. 2). The nodes represent 



20Mal J Med Health Sci 15(SP2): 18-24, July 2019

Table I: The top 20 differentially expressed genes in four selected mi-
croarray datasets

Up-regulated

GSE84402 GSE60502 GSE29721 GSE19665

Gene log FC Gene log FC Gene log FC Gene log FC

GPC3
TOP2A
ASPM

CCNB1
CTHRC1
PEG10
GINS1
CDKN3

SULT1C2
RRM2

3.320
3.207
2.924
2.892
2.820
2.817
2.800
2.757
2.581
2.473

SPINK1
GPC3
SPP1

GMNN
ACSL4
ASPM

AKR1B10
RRM2
CD24

TOP2A

4.304
3.458
2.560
2.417
2.400
2.368
2.349
2.336
2.178
2.134

PEG10
GPC3
CCL20

SULT1C2
ACSL4
CDKN3
ASPM
TOP2A
CCNB1
ANLN

4.670
4.418
3.722
3.716
3.462
3.413
3.408
3.406
3.402
3.371

ASPM
CRNDE

FAM83D
CDKN3
TRIM16
ANLN
TOP2A
HMMR
CCNB1
RBM24

3.747
3.656
3.532
3.485
3.457
3.172
3.167
3.110
3.095
3.078

Down-regulated

GSE84402 GSE60502 GSE29721 GSE19665

Gene log FC Gene log FC Gene log FC Gene log FC

SLC22A1
ABCA8
MT1M
GYS2
OIT3
FCN3

CYP1A2
APOF
GBA3

ADH1B

-4.138
-3.957
-3.925
-3.871
-3.853
-3.773
-3.616
-3.604
-3.556
-3.504

HAMP
CYP2E1
CYP1A2
CYP3A4
ADH1B
FCN3
APOF
MT1M

CYP2A6
SLCO1B3

-4.114
-3.954
-3.702
-3.495
-3.414
-3.360
-3.196
-3.031
-2.980
-2.972

THRSP
GBA3
TTC36
CNDP1
CLEC1B

GLS2
APOF

CXCL14
HAO2
NAT2

-4.593
-3.969
-3.946
-3.927
-3.717
-3.712
-3.684
-3.628
-3.595
-3.587

HAMP
PDGFRA

DCN
LUM

CRHBP
IGH
C7

OIT3
FCN3
SRPX

-6.77
-5.819
-5.758
-5.540
-5.490
-5.405
-5.367
-5.309
-5.190
-5.179

FC, fold change.

Figure 1: Venn diagram showing the intersection of DEGs from 
four datasets

each protein and the edges represent interactions 
between them. There are 137 single nodes (not shown) 
that do not formed a network and most of them are the 
down-regulated genes. Nodes degree and betweenness 
centrality are calculated by NetworkAnalyzer tool 
integrated in Cytoscape to identify the key genes. Nodes 
with high degree are regarded as hub genes and play 
a major role in robustness of the network. Apart from 
detecting hub nodes, the measurement of betweenness 
centrality (BC) to identify bottleneck nodes is also 
important. The BC measures the total number of shortest 
paths going through a certain node and the nodes with 
high betweenness; known as bottleneck nodes; act like 
a bridge in between highly interconnected network 
clusters (21). In this study, hub nodes with large BC 
value are considered as the key genes (Table III).

Table II: The top five over-represented GO terms and top three en-
riched KEGG pathways in up-regulated and down-regulated DEGs

Up-regulated

Genes Term Count p value

GOTERM_BP

GO:0051301~cell division
GO:0007067~mitotic nuclear division
GO:0007062~sister chromatid cohesion
GO:0000082~G1-S transition of mitotic 
cell cycle
GO:0006260~DNA replication

41
30
19
14

16

5.39 x 10-32

1.70 x 10-23

4.17 x 10-18

1.47 x 10-11

2.15 x 10-11

GOTERM_CC

GO:0005654~nucleoplasm
GO:0000777~condensed chromosome 
kinetochore
GO:0000775~chromosome, centromeric 
region
GO:0005829~cytosol
GO:0005634~nucleus

78
17

14

73
94

1.96 x 10-21

7.76 x 10-17

3.48 x 10-15

6.44 x 10-14

2.06 x 10-12

GOTERM_MF

GO:0005524~ATP binding
GO:0005515~protein binding
GO:0019901~protein kinase binding
GO:0003678~DNA helicase activity
GO:0003682~chromatin binding

46
123
20
5
14

9.72 x 10-13

1.02 x 10-10

2.70 x 10-9

6.95 x 10-5

8.61 x 10-5

KEGG PATH-
WAY

hsa04110:Cell cycle
hsa03030:DNA replication
hsa04115:p53 signaling pathway

17
11
6

9.67 x 10-14

1.87 x 10-12

6.65 x 10-4

Down-regulated

Category Term Count p value

GOTERM_BP

GO:0006805~xenobiotic metabolic process
GO:0019373~epoxygenase P450 pathway
GO:0055114~oxidation-reduction process
GO:0006898~receptor-mediated endo-
cytosis
GO:0071294~cellular response to zinc ion

14
9
29
16

7

4.04 x 10-11

4.12 x 10-11

1.02 x 10-8

3.99 x 10-8

1.41 x 10-7

GOTERM_CC

GO:0005576~extracellular region
GO:0070062~extracellular exosome
GO:0072562~blood microparticle
GO:0031090~organelle membrane
GO:0005615~extracellular space

65
83
19
14
47

3.78 x 10-16

3.97 x 10-13

1.61 x 10-12

1.12 x 10-10

1.86 x 10-9

GOTERM_MF

GO:0020037~heme binding
GO:0016705~oxidoreductase activity, acting 
on paired donors, with incorporation or 
reduction of molecular oxygen
GO:0019825~oxygen binding
GO:0005506~iron ion binding
GO:0004497~monooxygenase activity

19
12

11
16
11

3.08 x 10-13

1.99 x 10-10

4.87 x 10-10

2.04 x 10-9

4.32 x 10-9

KEGG PATH-
WAY

hsa01100:Metabolic pathways
hsa04610:Complement and coagulation 
cascades
hsa00830:Retinol metabolism

48
10

9

2.59 x 10-6

7.98 x 10-6

3.99 x 10-5

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological 
process; CC, cellular component; MF, molecular function.

Figure 2: PPI network of the up-regulated (red) and down-reg-
ulated (green) DEGs
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Module analysis
MCODE algorithm analysis identified five modules that 
may represent functional molecular complexes in cell 
(Fig. 3). The modules are analysed using ClueGO plugin 
to reveal the GO terms and KEGG pathways enriched 
in each module. The ClueGO visualisation is designed 
like a PPI network where the nodes are the GO terms 
or KEGG pathways and the edges are the relationship 
among the terms and pathways. Nodes having more 
than one color indicate that more than one term are 
sharing the same set of genes. In this analysis, module 
1 is shown to be involved in several functions and 
pathways, mainly mitotic cell cycle process, while the 
terms enriched in module 2-5 are specific to a particular 
function (Fig. 4).

DISCUSSION

The most widely used liver cancer biomarkers such as 
AFP and DCP failed to pass the cut-off criterion in this 
study, which might be caused by the differences in sample 
used in this analysis. In our selected microarray datasets, 
the samples used are from tissue biopsy while AFP and 
DCP are more commonly acted as serum biomarkers. 
Examples of common tissue-associated biomarkers 
include GPC3, HSP70 and TAG72 (22). In this study, 
GPC3 or Glypican-3, a heparan sulfate proteoglycan 
involved in cell growth regulation is observed to be 
among the top DEGs in three datasets (GSE84402, 
GSE60502 and GSE29721), validating its role as a 
potent liver cancer biomarker. In term of therapeutics 
target development, antibody-based therapies targeting 
GPC3 and other glypicans are being investigated in pre-
clinical and clinical studies, with the goal of treating 
solid tumors that do not respond to standard therapies 
(23). Apart from GPC3, other top DEGs include TOP2A, 
ASPM, CCNB2, CDNK3, FCN3 and APOF that appeared 
in at least three datasets in this study, suggesting their 
potential as liver cancer biomarkers and therapeutics 
targets.

DAVID functional annotation and pathway analyses 
revealed that the up-regulated genes are mostly 
enriched in function related to mitosis and cell cycle 
pathways, which are very closely related to cancer. 
The overexpression of cell cycle related genes may 
be partly responsible in hepatocellular carcinomatosis 
due to uncontrolled cell division process, which is in 
agreement with previous findings that showed the 
perturbation in the cell cycle regulation is one of the 
main factors that give rise to cancer (24,25). Meanwhile, 
the down-regulated genes are involved in several terms 
and pathways at lower p value compared to the up-
regulated genes. They mainly participated in diverse 
metabolism-associated signaling pathways for example 
xenobiotic metabolic process and epoxygenase P450 
pathway. In treatment of cancer, expression of drug 
and xenobiotic metabolising enzymes (DXME) plays a 

Figure 3: Modules obtained from the MCODE algorithm anal-
ysis

Table III: Key genes (*) in PPI network identified by degree and be-
tweenness centrality measurements

Node Degree Node Betweenness centrality

CDK1 86 PPAP2B 1

CCNA2 75 SQLE 1

CCNB1 75 SULTIA3 1

MAD2L1 74 LCAT 0.67

TOP2A 74 CETP 0.67

CCNB2 72 CFP 0.33

KIF11 67 FOS 0.32

NCAPG 66 *CDK1 0.29

CDC20 66 *TOP2A 0.22

TTK 65 C7 0.2

AURKA 65 C6 0.2

NDC80 64 ACLY 0.2

RRM2 63 ESR1 0.17

CENPA 63 *NDC80 0.16

MELK 61 CXCL12 0.16

PBK 61 NR1I2 0.15

DTL 61 IGF1 0.12

BUB1B 61 HBA1 0.07

PRC1 60 MSH2 0.07

NUSAP1 60 SPTBN2 0.07

KIF2C 59 CYP1A2 0.06

Figure 4: ClueGO network showing the interaction of enriched 
GO terms (eclipse) and KEGG pathways (triangle) of the five 
PPI network modules
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major role in patients’ response and resistance to drug 
therapy. It does so by controlling the distribution of drug 
into the cells (26). There is a strong genomic instability 
that leads to highly variable expression of DXME, hence, 
understanding the behavior of DXME toward drugs 
could be beneficial for better precision medicine (27). 
Apart from metabolism-associated signaling pathways, 
ClueGO analysis revealed three more pathways 
enriched in down-regulated modules, which are platelet 
degranulation, complement and coagulation cascade 
and cellular response to zinc ion.

Topological analysis of PPI network identified TOP2A, 
CDK1 and NDC80 as the key genes in the network. 
TOP2A, or DNA topoisomerase II alpha is a cell cycle 
related gene that encodes a DNA topoisomerase, an 
enzyme that controls and alters the topologic states of 
DNA during transcription. It is reported that TOP2A is 
overexpressed in tumor tissues compared to adjacent 
non-tumor tissues (28). The gene is highly regulated at 
transcriptional and translational level suggesting that 
TOP2A overexpression may arise from aberration at 
these levels (29). It is located on chromosome 17 and is 
related to the onset of malignancy and chemoresistance, 
often shortening the survival time of liver cancer patients 
(30). Previous study by immunohistochemical staining 
method proved that liver cancer patients with lower 
TOP2A level index had significantly longer disease-
free survival and exhibited a longer cumulative survival 
period than those with higher TOP2A level index (31). 
Another key gene identified is CDK1, the primary 
regulator of cell cycle from CDK family. The cell 
cycle process consisted of G1, S, G2 and M phase and 
functioned to regulate cell proliferation. CDK1 encodes 
cyclin-dependent kinase 1, known to have a major 
role in the control of G2-M transition, G1 progression 
and G1-S transition in eukaryotic cell (32). Previous 
study has demonstrated that CDK1 is upregulated in 
liver cancer and modulated the G2-M checkpoint in 
liver cancer cell cycle and cell proliferation (33). CDK 
family such as CDK1 and CDK2 has also been reported 
to be overly expressed in many types of cancers, such 
as lung cancer, colon cancer and adenomatous tissue 
carcinomas (34,35). The third key gene is NDC80, a 
coiled-coil protein critical for cell mitosis and holds a 
portfolio in chromosome segregation by interacting with 
several proteins that modulate the G2-M phase through 
its coiled-coil domains (36). NDC80 is overexpressed 
in a variety of human cancers such as gastric and 
breast cancer (37,38). Taken together, all these data 
suggests that TOP2A, CDK1 and NDC80 involved in the 
pathogenesis of liver cancer by affecting mitosis and cell 
cycle process, which generally agreed with our findings.

TOP2A and CDK1 have already been developed as 
targeted therapy of cancer. Targeting TOP2A gene using 
enzyme binders such as etoposide or DNA lesions can 
result in topoisomerase 2-mediated DNA damage and 
targeting TOP2A with the combination of etoposide with 

doxorubicin, a chemotherapy drug can triggered the cell 
death mechanism in liver cancer cells (39). Meanwhile, 
knockdown of CDK1 gene has shown to reduce cell 
proliferation in liver cancer cells (40). Various CDK1 
inhibitors have been developed to treat cancer for 
example flavopiridol, olomoucine, and staurosporine 
(41). As for NDC80, various studies have showed a 
significant differential expression of this gene in cancer, 
hence, it could be nominated as a new target for gene 
therapy in treating liver cancer. In regards to biomarker 
development, the key genes identified in this study 
are also up-regulated in other diseases such as breast, 
colon and lung cancer hence their potential to be the 
biomarkers specific for liver cancer may not be ideal. 

CONCLUSION

In summary, we have identified TOP2A, CDK1 and 
NDC80 as key genes in liver cancer using bioinformatics 
approach. These genes are closely related to cancer and 
have been studied as biomarkers and targeted therapy 
in cancer diagnosis and treatment. By performing the 
functional and pathway enrichment analyses, our 
study has provides information regarding the molecular 
mechanism underlying liver cancer in order to increase 
our understanding regarding liver cancer development 
and progression at molecular level.
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