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ABSTRACT

Introduction: There is a growing concern in using zinc oxide nanoparticles (ZnO NPs) for medical devices as alterna-
tive options in reducing hospital-acquired infections (HAIs). The commensal HAIs; Staphylococcus aureus (S.aureus) 
infect patients and lead to increased rates of morbidity and mortality. This study aims to investigate the antibacterial 
action of ZnO NPs in three different shapes; nanorod, nanoflakes and nanospheres impregnated in low-density 
polyethylene (LDPE) against S.aureus ATCC 25923. Methods: The antibacterial efficiency of ZnO NPs was studied 
through two standard test methods included were based on Clinical Laboratory Standards Institute (CLSI) guidelines 
MO2-A11 under light conditions of 5.70 w/m2 and American standard test method (ASTM) E-2149. Results: Prelim-
inary screening did show a significant growth inhibition against S.aureus with ZnO NPs nanorod and nanoflakes, 
approximately in 7 to 8 mm zones of inhibition. Further analysis using ASTM E-2149 in dynamic conditions revealed 
variable activity depending on incubation treatment periods. It demonstrated the ZnO NPs in nanoflakes and nano-
sphere shape showed better inhibition against S.aureus with maximum reduction (100%). The FESEM results strongly 
suggest that the structure of ZnO nanoflakes and nanosphere played an importance role in nanomaterial-bacteria 
interaction which consequently cause cell membrane damage. Additionally, the irradiation under light treatment 
also enhance the generation of ROS and free radicals which helps the bactericidal activity against S.aureus. Conclu-
sion: This study provides new insights for the antibacterial action of ZnO NPs/LDPE thin films in future biomedical 
appliances to reduce HAIs risks.
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INTRODUCTION

Nowadays, the conversion of bulk particles into 
nanoparticles (NPs) is emerging in the biomedical field. 
The applications of nanosize metal oxides – whose 
dimensions range from 1 - 100 nanometres (nm) – as 
antibacterial agents is on the rise as they have been 
widely studied. Among metal oxide NPs, there is 

currently great interest in the development of zinc 
oxide (ZnO) NPs because of their unique properties. 
Their wide band gap of -3.37 eV, high binding energy 
of 60 meV at room temperature, high photocatalytic 
activity, and high optical absorption are beneficial in 
antibacterial activities (1, 2). The abilities of the NPs to 
generate reactive oxygen species (ROS) and free radicals 
in the presence of visible light are currently explored 
for their feasibility to be used as antibacterial agents to 
reduce the risk of hospital-acquired infections (HAIs) (3).
HAIs are presently a safety concern in worldwide 
healthcare. There are many factors of the development 
of HAIs in hospitalized patients, examples of 
which include impaired immune systems, invasive 
examinations and treatment, repetitive use of antibiotics 
(which can promote antibiotic resistance), as well as 
poor sterilization and disinfection practices among the 
staff (4). Additionally, poor sterilization and disinfection 
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of medical devices such as catheters potentially lead to 
serious risks when in contact with patients (5). These 
factors create possible routes for the transmission of 
HAI-causing pathogens into patients, hence increasing 
the morbidity and mortality rates. A well-known 
microorganism that is most frequently associated with 
HAIs is a Gram-positive bacterium, Staphylococcus 
aureus (S. aureus) (6, 7).

 ZnO NPs are synthesized in different sizes and shapes, 
as well as impregnated in low-density polyethylene 
(LDPE) thin film in order to evaluate the antibacterial 
activities. Biomedical coatings with antibacterial 
thin films can help resist bacterial adhesion and 
colonization, apart from reducing the need for surgical 
removal of implanted biomaterials (such as central 
venous catheters) in order to minimize HAI risks (8-12). 
Here, we have synthesized ZnO NPs of three different 
morphologies: nanorods, nanoflakes, and nanospheres. 
We characterized our improved ZnO NPs using field 
emission scanning electron microscopy (FESEM). The 
antibacterial activities of S. aureus were evaluated using 
two different standard protocols that were known as 
CLSI MO2-A11 and ASTM E-2149 (13,14). 
 
MATERIALS AND METHODS

Synthesis and characterization of ZnO NPs
ZnO nanorods were produced by solution precipitation 
method using zinc nitrate tetrahydrate (Zn(NO

3
)24H

2
O, 

Merck), hexamethylenetetramine (HMT, (CH
2
)6N

4
, 

Merck) and polyvinylpyrrolidone (PVP). Two solutions 
were prepared as follows: solution A – 0.12 M 
Zn(NO

3
)
2
.4H

2
O was dissolved in 100 ml of de-ionized 

water; solution B – 0.04 M HMT in 100 ml of de-ionized 
water; Solution C – 0.09 M PVP in 100 ml of de-ionized 
water. All solutions were stirred for 30 min at 90°C.  
Solution A and B were added into the solution C under 
constant stirring rate at 90°C until white precipitate 
was formed. Centrifugation was carried out at 3000 
rpm for 20 min in order to separate the precipitate from 
the solution and was dried in the oven for overnight at 
100°C.

ZnO nanoflakes were produced by using 0.41 M of zinc 
chloride (Zn(Cl

2
)
2
4H

2
O) dissolved in 100 ml of ethanol 

and kept under constant stirring using magnetic for 1 
hour. 0.8 M of Potassium hydroxide (KOH) was also 
prepared in 100ml with stirring of 1 hour. After complete 
dissolution of zinc chloride, KOH aqueous solutions 
were added under high speed constant stirring drop 
by drop for 45 min. Further, the supernatant solution 
was separated carefully. The remaining solution was 
centrifuged for 20 min and the precipitate was removed. 
Thus, precipitated ZnO nanoparticles were cleaned 
with de-ionized water and ethanol then dried in oven 
for 8 hours at 60°C.

In the typical experiments, ZnO nanopsheres were 

produced by using 0.12 M of zinc acetate dihydrate 
(Zn(CH

3
COO)

2
.2H

2
O (99.5%)) dissolved in 200 ml 

deionized water (DI) and heated at 65°C under constant 
stirring. Simultaneously, 0.53 M of potassium hydroxide 
(KOH) solution was prepared in 100 ml deionized 
water. When KOH solution was added dropwise into 
the above solution, white gel was formed. The gel was 
allowed to precipitate at 100°C for 2 h in normal oven 
for characterization. 

Preparation and characterization of ZnO NPs/LDPE 
composite
The low density polyethylene (LDPE) matrix was 
prepared from pallets mixture of the industrial LDPE 
(TITANLENE) without additives. The thin film was 
prepared by wet casting method. In order to prepare 
NPs/LDPE composite, 10 mg of NPs was added to 10 ml 
dichlorobenzene and ultrasonicated. Simultaneously, a 
LDPE/dichlorobenzene was prepared by dissolving 1 g 
LDPE in 20 ml dichlorobenzene, using a magnetic stirrer 
at 120°C. Nanoparticles/dicholorobenzene was added 
to LDPE/dichlorobenzene solution and was vigorous 
stirred for 1 minute.  Then, this mixture was transferred 
to petri dish and dried at 80°C for 24 hours in an oven to 
evaporate the solvent. 

Antibacterial Disc Susceptibility Tests (Semi 
quantitative test)
The disc diffusion assay of ZnO NPs was conducted 
according to the guidelines of CLSI MO2-A11 (13). 
It was also known as the agar diffusion Kirby-Bauer 
assay, which was commonly used as an antibacterial 
pre-screening test. S. aureus ATCC 25923 was cultured 
aerobically at 37°C on Luria–Bertani agar plates (Merck, 
Germany) for 24 hours. The positive control was 
represented by the standard antibiotic (ampicillin) while 
negative control discs (sample diluent) 10% dimethyl 
sulfoxide (DMSO) (Sigma-Aldrich). The samples were 
cut into thin film of diameter 6 mm and carefully placed 
onto the agar surface. All test samples were minimally 
exposed to visible light (Electricity fluorescent fixture T5 
8W of intensity 5.70 w/m2) 2 hours prior to incubation. 
All tests were done in triplicates. The plates were 
incubated at 37°C for 18-24 hours. 

Standard Test Method under Dynamic Contact 
Condition: ASTM E-2149 (Quantitative test)
The antibacterial activities of LDPE nanocomposites 
(which contained different shapes of ZnO nanoparticles) 
and blank control substrate materials (2.7 x 2.7 cm2) 
were also evaluated using a shake flask method along 
with phosphate buffer solution to investigate the 
reduction in bacterial reduction after certain incubation 
periods. The conical flasks were shaken (115 rpm) for 
1, 3, and 6 hours at 37°C using a mechanical shaker 
under visible light (Electricity fluorescent fixture T5 8W 
with intensity of 5.70 w/m2). After 1 h of stirring, 100-
µl aliquots of appropriate dilutions were aseptically 
pipetted to determine the bacterial concentrations via 
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standard plate count techniques. The colonies were 
counted after 24 hours of incubation and compared 
with those on the control plates to measure the changes 
in the cell growth inhibition. The percentage reduction 
of bacteria (R %) was calculated using the following 
equation:

R% (CFU/mL) = [(B-A)/B] X 100  
where R is antibacterial rate (%), B are the average 
number of cell colony of sample  (CFU/sample) at t0 
(1 hour) contact time and A are the average number 
of colony of treated sample (CFU/sample) at specified 
contact time (14).  

Statistical analysis
All data were analyzed using GraphPad PRISM VERSION 
7. Data was presented as mean ± standard deviation. 
The ANOVA was applied to calculate the statistical 
significant of the experiment data and the difference 
between mean values was compared by Tukey’s test (p 
< 0.05).

RESULTS 

SEM images of ZnO NPs
Fig. 1 shows representatives SEM images of the prepared 
ZnO NPs samples with three different morphologies. 
The samples are well-defined in three dimensional 

nanoparticles, From the FESEM images, it is clear that 
the ZnO NPs in nanorood shapes (Fig. 1 a) showed rod-
shapes NPs, ZnO in nanoflakes shapes (Fig. 1 b) showed 
a tiny plate-like form with a uneven ridges at the outer 
surface and ZnO NPs in nanosphere shapes (Fig. 1 c) 
with high specific surface area.

Antibacterial activity
The results of antibacterial activity of ZnO NPs are 
presented in Fig. 2 and Table I. Figure 2 shows the ZnO 
NPs in nanoflakes shapes have larger inhibition zones 
with mean zone of inhibition of (7.83 ± 0.29) mm 
following with ZnO in nanorod shapes (7.33 ± 1.16) 
mm compared to untreated ZnO NPs-LDPE thin films 
(6.0 ± 0.0) mm. 

The antibacterial activity was confirmed by another 
standard protocol in aqueous solution treated with 
visible light for 6 hours. A noteworthy bactericidal 
activity was observed after 1 hour treatment for S.aureus 
(100% mortality) with ZnO NPs in nanoflakes and 
nanospheres shapes under dynamic condition (Table 1). 

DISCUSSION

ZnO NPs have been explored for their role as 
antibacterial agents against a variety of microorganisms 

Figure 1: SEM images of ZnO NPs with different morphology. (a) ZnO in rod-shaped shapes, (b) ZnO with tiny plate-
like form nanoflakes shapes and (c) ZnO in nanospheres shapes (30.00 KX, 200 nm)
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Figure 2: Effect of different shapes ZnO NPs on the growth of S.aureus ATCC 25923 pathogen. Inhibition zones were measured after 72 
hours after exposure with light for 2 hours prior incubation treatment. Values are expressed as means (n =3) and error bars represent standard 
deviation. Asterisks (*) indicate a statistical significant difference (p < 0.05) between the untreated LDPE and ZnO NPs-LDPE thin films.

Table I:.Bacterial reduction percentage results of different shapes ZnO NPs on the growth of both Gram positive (S.aureus ATCC 25923)

Time (Hour) ZnO NPs

Nanorods Nanoflakes Nanospheres

Inoculum (CFU/mL) Bacterial re-
duction (%)

Inoculum (CFU/mL) Bacterial re-
duction (%)

Inoculum (CFU/mL) Bacterial re-
duction (%)

0 (2.67 ± 1.15) x 102 - (4.0 ± 1.73) x 102 - (3.67 ± 1.15) x 102 -

1 (0.33 ± 0.58) x 102 87.64 0.0 100 0.0 100

3 (0.66 ± 0.58) x 102 75.28 0.0 100 0.0 100

6 0.0 100 0.0 100 0.0 100

Colony were counted and reduction % was measured after 1, 3 and 6 hours after exposure with visible light.

(15-17). The antibacterial activities of ZnO NPs are 
influenced by several factors like particle size and shape 
as well as presence of light. This study has evaluated 
the antibacterial activities of various shapes of ZnO NPs 
(that have been incorporated into LDPE polymers) on 
a Gram-positive commensal HAI-related pathogen – S. 
aureus. 

Antibacterial effectiveness was determined by the size 
of the growth inhibition zones and number of bacterial 
colonies following exposure to ZnO NPs for certain 
incubation periods. As an initial approach, the agar 
disc diffusion method was used as a screening test (18). 
During visual inspections of the formation of inhibition 
zones around the samples, only ZnO nanoflakes had 
significant zones of inhibition compared with the 
untreated thin films. Conversely, ZnO nanorods and 
nanospheres showed non-significant differences against 
the said controls (p > 0.05). The cultures that were 
exposed to ZnO nanospheres did not give rise to any 
inhibition zones around the samples, hence indicating 
that they did not possess any antibacterial properties. 
This could have been due to inadequate contact of 

samples to water, thereby limiting the release of Zn2+ 
ions during incubation that was otherwise responsible 
for the inhibition of S. aureus growth. Moreover, this 
static condition did not result in adequate exposure 
of the surface area of both sides of ZnO nanospheres 
for contact with the surface layers of bacteria. After 
obtaining these screening results, we have confirmed 
the antibacterial activities by using further assays 
(which involved dynamic contact in aqueous solution 
and were guided by ASTM E-2149) under continuous 
light treatment for 6 hours. This method was chosen in 
order to overcome the limitations of conventional disk 
diffusion methods, apart from ensuring proper contact 
of the samples with the inoculums. Bacteriostatic and 
bactericidal effects were considered if the reduction 
in total original bacterial count exceeded a certain 
percentage. If the percentage reduction was more than 
99.9% CFU/mL, the agent would be considered as 
bactericidal. Meanwhile, if the percentage reduction 
was between 90% and 99.9% CFU/mL, the agent would 
be categorized as bacteriostatic (19,20). All assayed 
samples showed high antibacterial activity, as per Table 
I. ZnO NPs tended to release Zn2+ ions when in contact 
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was possible to develop thin antibacterial films using 
ZnO NPs. Further studies are needed to investigate the 
cytotoxicity of these samples in order to further improve 
their future applications in the biomedical field.

CONCLUSION

In conclusion, ZnO nanoflakes and nanospheres 
provided better antibacterial activities against Gram-
positive pathogens. The shape-dependent inhibition 
behavior was associated with a large surface area to 
volume ratio, which allowed direct attachment of 
antibacterial ions with the bacterial cell surfaces. ZnO 
NPs could be excited by light irradiation, following 
which they could react with molecular oxygen to 
generate ROS as well as effect cytotoxicity on the 
bacterial membranes. Additionally, ROS formation 
in aerobic respiration in bacteria also caused the 
accumulation of ROS with the formation of free radicals 
that led to oxidative stress. These resulted in damage 
to the nucleotides and membrane lipids of S. aureus. 
Furthermore, ROS could reduce the synthesis of catalase 
– one of the protective barriers in bacteria – thus causing 
serious damage to the intracellular components and 
leading to bacterial cell death. The findings presented 
here demonstrated the potential ZnO NPs to minimize 
the rates of HAI in the future.
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