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Effect of hexavalent chromium-induced ribosomal DNA copy number

variation on DNA damage response in various cell lines
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Abstract: Objective To investigate the effect of ribosomal DNA (rDNA) copy number variation caused by hexavalent
chromium exposure on DNA damage response in different cell lines, so as to provide insights into the involvement of
hexavalent chromium-induced rDNA copy number variation in DNA damage responses. Methods Human lung epithelial
BEAS-2B cells and human embryonic lung MRC-5 cells were treated with 2 pmol/L potassium dichromate for 24
hours, and then cells were transferred to fresh media for further incubation, while cells treated with the same volume of
phosphate buffer solution served as controls. Cells treated with potassium dichromate for 24 hours, and 3 and 7 days

post—detoxification, were harvested, and rDNA copy number was quantified in cells using a quantitative fluorescent real—
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time PCR assay. Cell cycle, apoptosis and DNA damage were detected using a Muse cell analyzer, and the DNA dam-
age was evaluated with the proportion of ataxia telangiectasia—mutated (ATM) gene activation, proportion of double-
strand DNA breaks and the percentage of the H2A.X variant histone phosphorylatio. Results The 45S and 5S rDNA
copy numbers of were significantly higher in MRC-5 cells than in BEAS-2B cells [(1.54+0.26) vs. (1.02+0.18), P<0.05;
(6.97+1.07) vs. (3.00+0.15), P<0.05]. The 45S rDNA copy number was lower in MRC-5 cells 3 days post—detoxification
(0.80+0.04) than in controls (P<0.05), and was higher in BEAS-2B cells 3 days post—detoxification (1.43+0.07) than in
controls (P<0.05) .
were significantly higher in MRC-5 cells 3 and 7 days post—detoxification than in controls [(11.53+1.53)%, (18.33+

G0/G1 phase arrest was found in MRC-5 cells 24 hours post—treatment, and the apoptotic rates

0.70)% vs. (3.53+0.93)%, P<0.05]. The overall apoptotic rates 24 hours post—treatment and 3 days post—detoxification
[(2.80+0.17)%, (3.33+0.57)% vs. (1.53+0.61)%, P<0.05], proportion of ATM gene activation 3 days post—detoxification
[(3.37+0.67%) vs. (1.18+0.22)%, P<0.05], proportion of double—strand DNA breaks 3 days post—detoxification [(4.45+
0.85)% vs. (0.97+0.21)%, P<0.05] and percentage of the H2A.X variant histone phosphorylation 3 days post—detoxifica-
tion [(1.68+0.56)% vs. (0.29+0.06)%, P<0.05] in BEAS-2B cells were higher than in controls. Conclusions Hexavalent
chromium-induced rDNA copy number variation affects DNA damage response in different cell lines. A stronger DNA

damage response is found in BEAS-2B cells with a low rDNA copy number, and a relative stable response is observed

in MRC-5 cells with a high rDNA copy number.

Keywords: hexavalent chromium; ribosomal DNA; copy number variation; DNA damage response
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288 GCGGGTGGTAAACTCCATCT  CACGCCCTCTTGAACTCTCT
18S CGCGCTCTACCTTACCTACC  GGCCGTGCGTACTTAGACAT
5.85 CGACTCTTAGCGGTGGATCA  GATCAATGTGTCCTGCAATTC
55 TCGTCTGATCTCGGAAGCTAA  AAGCCTACAGCACCCGGTAT

TP53  TGTCCTTCCTGGAGCGATCT CAAACCCCTGGTTTAGCACTTC
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Table 2 Comparison of rDNA copy numbers between MRC-5
and BEAS-2B cells (x+s)

ZIlIES 45S rDNA # U1 % 5S rDNA % 115
MRC-5 1.54+0.26 6.97+1.07
BEAS-2B 1.02+0.18 3.00+0.15
t{E 2.808 6.374

PIg 0.048 0.003

&R 3 4 4] MRC-5 5 BEAS-2B 4l rDNA % DI HLEE (x+s)
Table 3

Effect of hexavalent chromium on rDNA copy number

between MRC-5 and BEAS-2B cells (x+s)

455 rDNA$£ D% 5S rDNA $% D1

4151

MRC-5 BEAS-2B MRC-5 BEAS-2B
X HEEH 1.00 1.00 1.00 1.00
AR 24 b 1.20:0.06  1.13x0.10  1.09+0.10 1.03x0.12
£EE3 d 0.80+0.04 * 1.43+0.07 * 0.90+0.06 1.00+0.15
FHRT 1.0820.11  1.160.07  1.01x0.23 0.99:0.13
FAE 19.650 13.290 1.082 0.066
P{E 0.001 0.002 0.410 0.977
TE: FOREXIRA LA P<0.05, X RZH A0 (DN A $% DUSOHT X2

KEN 1.00,
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Table 4 Cell cycle variation between MRC-5 and BEAS-2B cells post—exposure to hexavalent chromium (x+s/%)

MRC-5 4t L]

BEAS-2B 4l fif1 .47

A GO/G11 S G2/M ] GO/G11Y] S G2/M 1]
XFHEZ 39.65+4.38 7.43+0.07 30.60+2.16 59.66+4.14 11.50+2.88 24.99+6.90
ANINEEYLEE24 h 56.07+1.74 * 7.31+0.08 22.54+0.67 * 57.62+0.95 13.72+0.91 25.34+1.94
FHE3d 44.20+1.34 7.35+0.07 27.7020.86 47.94+4.39 9.52+0.30 36.47+4.31
FH#RT d 39.07+5.98 9.79+1.86 32.86+3.51 50.44+0.91 8.57+0.34 31.08+1.69
FIH 12.490 5.084 13.100 6.602 4.478 3.247
P{E 0.002 0.029 0.002 0.050 0.090 0.143
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Table S Comparison of apoptosis between MRC-5 and BEAS-2B cells post—exposure to hexavalent chromium (x+s/%)
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FHET d 5.10+0.85 * 13.20+0.26 * 18.33+0.70 * 0.23+0.06 2.33+0.50 2.57+0.51
FAH 44.880 228.400 156.400 16.110 8.027 6.908
PH <0.001 <0.001 <0.001 <0.001 0.009 0.013
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Table 6 Comparison of DNA damage between MRC-5 and BEAS-2B cells post—exposure to hexavalent chromium (x+s/%)

- ATM PTG R DNA B i 245 H2A X B ILR

MRC-5 BEAS-2B MRC-5 BEAS-2B MRC-5 BEAS-2B
Xof B 0.32+0.05 1.18+0.22 1.00+0.36 0.97+0.21 0.45+0.28 0.29+0.06
ANIMEEYEE24 h 0.19+0.08 1.67+0.22 0.86+0.13 2.69+0.47 * 0.20+0.10 0.58+0.16
FHE3d 1.62+0.54 * 3.37+0.67 1.77+0.41 4.45+0.85 * 0.49+0.24 1.68+0.56 *
EHET d 1.40+0.32 * 4.03+1.25 * 1.04+0.18 1.46+0.23 0.41+0.09 0.68+0.09
F{H 16.120 10.500 5.691 28.080 1.289 12.390
PAi 0.001 0.004 0.022 <0.001 0.343 0.002
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