Protective mechanism of Yinchenzhufu decoction against cholestatic liver injury induced by lithic acid based on network pharmacology
10.16438/j.0513-4870.2023-0568
- VernacularTitle:基于网络药理学的茵陈术附汤抗石胆酸诱导的胆汁淤积性肝损伤作用机制研究
- Author:
Lin-cong ZHANG
;
Jia-sheng WU
;
Tian TIAN
;
Yuan-yuan LI
;
Tian-ming WANG
;
Yue-ming MA
- Publication Type:Research Article
- Keywords:
Yinchenzhufu decoction;
lithocholic acid;
network pharmacology;
cholestatic liver injury;
bile acid homeostasis;
pyroptosis
- From:
Acta Pharmaceutica Sinica
2023;57(11):3366-3378
- CountryChina
- Language:Chinese
-
Abstract:
Yinchenzhufu decoction (YCZFD) is a classic formula for treating Yin Huang syndrome, which can improve liver injury caused by cholestasis. However, the mechanism of action of YCZFD still remains unclear. This article used network pharmacology, molecular docking, animal experiments, and molecular biology methods to explore the mechanism of YCZFD in treating liver injury caused by cholestasis. A mouse model of acute cholestasis induced by lithocholic acid was used to investigate the effects of YCZFD on liver injury. The experimental procedures described in this paper were reviewed and approved by the Ethical Committee at the Shanghai University of Traditional Chinese Medicine (approval NO. PZSHUTCM190823002). The results showed that YCZFD could reduce the levels of blood biochemical indicators and improve hepatocyte damage of cholestatic mice. Then, multiple databases were used to predict the corresponding targets of YCZFD active components on cholestatic liver injury. An intersection target protein-protein interaction (PPI) networks based on String database and Cytoscape software was used to demonstrate the possible core targets of YCZFD against cholestatic liver injury. The results indicated that core targets of YCZFD include tumor necrosis factor, interleukin-1β, non-receptor tyrosine kinase Src, interleukin-6, etc. GO (gene ontology) and KEGG (kyoto encyclopedia of genes and genomes) enrichment analysis indicated that YCZFD may regulate the tumor necrosis factor signaling pathway, nuclear factor-κB signaling pathway, bile secretion, and other related factors to ameliorate the cholestatic liver injury. AutoDockTools software was used to perform molecular docking verification on the core targets and components of YCZFD. To verify the results of network pharmacology, UPLC-MS/MS method was used to determine the effect of YCZFD on levels of bile acid profiles in mouse liver tissues. It was found that treatment with YCZFD significantly reduced the content of free bile acids, taurine bound bile acids, and total bile acids in the liver tissues of cholestatic mice. Then, results from real time PCR and Western blot also found that YCZFD can upregulate the expression of hepatic nuclear receptor farnesoid X receptor, metabolizing enzyme (UDP glucuronidase transferase 1a1), and efflux transporters (bile salt export pump, multidrug resistance-associated protein 2, multidrug resistance-associated protein 3, etc) in cholestasis mice, promote bile acid metabolism and excretion, and improve bile acid homeostasis. Moreover, YCZFD can also inhibit pyroptosis and inflammation by regulating NOD-like receptors 3 pathway, thereby inhibiting cholestatic liver injury.