Investigation on Mechanisms of Osteoking Against Four Types of Bone Injury Diseases Based on Heterogeneous Information Network with Concept of "Treating Different Diseases with an Identical Treatment"
10.13422/j.cnki.syfjx.20231037
- VernacularTitle:异构信息网络驱动的恒古骨伤愈合剂“异病同治”4种骨伤疾病的作用机制
- Author:
Suya ZHANG
1
;
Zhaochen MA
1
;
Shuangrong GAO
1
;
Weiheng CHEN
2
;
Yanqiong ZHANG
1
;
Na LIN
1
Author Information
1. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
2. The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100029, China
- Publication Type:Journal Article
- Keywords:
Osteoking;
heterogeneous information network;
treating different diseases with an identical treatment;
fracture;
femoral head necrosis;
osteoarthritis;
lumbar disc herniation
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2023;29(24):42-53
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo elucidate the mechanism of Osteoking against fracture, femoral head necrosis, osteoarthritis, and lumbar disc herniation by integrating heterogeneous information network mining and experimental validation. MethodOn the basis of the disease-related database and transcriptome expression profiling dataset, as well as the ETCM database, the gene sets related to four target diseases and the candidate target spectrum of Osteoking were obtained through the integration and analysis of bioinformatics data, and a "disease-syndrome-formula-target-pathway-effect" heterogeneous information network was constructed. In addition, by functional enrichment analysis, the core targets of Osteoking in interfering with the imbalance network of four kinds of bone injury diseases, the biological pathways involved, and the corresponding clinical symptoms were screened, and they were verified in animal experiments. ResultHeterogeneous information network mining indicates that Osteoking may commonly reverse the imbalance networks of fracture, femoral head necrosis, osteoarthritis, and lumbar disc herniation via regulating cell function and activity, inhibiting inflammatory response, reducing bone destruction, and improving the immune function of the body by modulating relevant core candidate targets such as RAC-alpha serine/threonine-protein kinase (Akt1), catenin beta-1 (CTNNB1), epidermal growth factor receptor (EGFR), heat shock protein 90-alpha (HSP90AA1), and phosphatidylinositol 3-kinase catalytic subunit alpha isoform (PI3KCA), as well as related biological pathways such as phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt), janus kinase/signal transducer and activator of transcription (JAK/STAT), tumor necrosis factor (TNF), nuclear factor kappa-B (NF-κB), and Toll-like receptors. In particular, Osteoking may improve the blood supply of the fracture end by regulating blood circulation at the target site of the disease, and it may maintain the balance of bone metabolism by regulating hormone-related pathways to promote fracture healing. In addition, Osteoking may relieve lipid metabolism disorders by targeting and regulating lipid-related pathways, accelerate bone formation and bone repair, and delay the progression of femoral head necrosis. Osteoking may relieve the symptoms of pain by acting on neurological pathways to reduce local nociceptive stimulation in patients with osteoarthritis and lumbar disc herniation. Further experimental validation demonstrates that the PI3K/Akt signaling pathway is the most significantly enriched pathway for the key network targets of Osteoking for the four diseases. The candidate target of Osteoking may have the strongest association with the network of fracture-related genes. Therefore, this study chooses fracture as the target disease to verify the efficacy of Osteoking. The results show that Osteoking can accelerate bone formation and promote fracture healing by inhibiting the activation of the PI3K/Akt signaling axis. ConclusionThe study shows that the main mechanism of "treating different diseases with an identical treatment" of four bone injury diseases with Osteoking involves cell function regulation and immune inflammation-related signaling pathways. Further experimental validation identifies that the PI3K/Akt signaling axis may be one of the key pathways of Osteoking to promote bone regeneration, bone reconstruction, and bone metabolism homeostasis.