Effect of sleep fragmentation on postoperative cognitive dysfunction and hippocampal glutamatergic metabolism in aged mice anesthetized with isoflurane
10.3760/cma.j.cn131073.20230310.00510
- VernacularTitle:睡眠碎片化对异氟烷麻醉老龄小鼠POCD及海马谷氨酸能代谢的影响
- Author:
Yun LI
1
;
Lina ZHAO
;
Yize LI
;
Yang YU
;
Jiafeng YU
;
Jingyu FENG
;
Keliang XIE
;
Yonghao YU
Author Information
1. 天津医科大学总医院麻醉科 天津市麻醉学研究所,天津 300052
- Keywords:
Sleep disorders;
Isoflurane;
Anesthesia;
Cognitive dysfunction;
Aged;
Hippocampus;
Glutamic acid
- From:
Chinese Journal of Anesthesiology
2023;43(5):559-563
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To evaluate the effect of sleep fragmentation on postoperative cognitive dysfunction (POCD) and hippocampal glutaminergic metabolism in aged mice anesthetized with isoflurane.Methods:Forty healthy SPF-grade male C57BL/6J mice, aged 18 months, weighing 20-30 g, were divided into 4 groups ( n= 10 each) by the random number table method: normal control group (group C), sleep fragmentation group (group SF), isoflurane anesthesia/surgery group (group I/S), and sleep fragmentation plus isoflurane anesthesia/surgery group (group SF+ I/S). Group C did not received any treatment. Group SF received sleep fragmentation for 24 h. The right carotid artery exposure was performed under isoflurane anesthesia in group I/S. Group SF+ I/S received isoflurane anesthesia/right carotid artery exposure at 24 h after sleep fragmentation. The metabolic levels of glutamate (Glu), glutamine (Gln), Glu/Gln complex (Glx), and N-acetylaspartate (NAA) and their ratio to creatine (Cr) were measured by in vivo 9.4T hydrogen proton magnetic resonance spectroscopy at 2 h after anaesthesia. Y maze and Morris water maze tests were used to evaluate the cognitive function at 1-7 days after surgery. The mice were sacrificed after the behavioral testing, brain tissues were immediately obtained, and the number of Nissl bodies and density of dendritic spines in the hippocampal CA1 region were measured by Nissl staining and Golgi staining, respectively. Results:Compared with group C, the percentage of exploration time and shuttle times at the novel arm were significantly decreased, the number of crossing the original platform was decreased, the time of stay at the target quadrant was shortened, the ratios of Glu/Cr, Gln/Cr and Glx/Cr in the hippocampal CA1 region were increased, and the ratio of NAA/Cr was decreased, and the number of Nissl bodies and density of dendritic spines were decreased in SF, I/S and SF+ I/S groups ( P<0.05). Compared with group SF and group I/S, the percentage of exploration time and shuttle times at the novel arm were significantly decreased, the number of crossing the original platform was decreased, the time of stay at the target quadrant was shortened, the ratios of Glu/Cr and Glx/Cr in hippocampal CA1 region was increased, the ratio of NAA/Cr was decreased, and the number of Nissl bodies and density of dendritic spines were decreased in group SF+ I/S ( P<0.05). Conclusions:Sleep fragmentation exacerbates POCD in aged mice anesthetized with isoflurane, and the mechanism is related to nerve injury induced by abnormality in hippocampal glutaminergic metabolism excitability.