The study on the tissue engineered bladder patch constructed with the double-layer silk scaffold and adipose-derived stem cells for bladder repair and reconstruction
10.3760/cma.j.cn112330-20210629-003513
- VernacularTitle:双层蚕丝支架复合脂肪干细胞构建的组织工程膀胱补片用于膀胱修复重建的效果
- Author:
Shuwei XIAO
1
;
Weijun FU
;
Pengchao WANG
;
Jian ZHAO
;
Zhengyun LING
;
Ziyan AN
;
Zhouyang FU
;
Xu ZHANG
Author Information
1. 解放军总医院泌尿外科,北京 100853
- Keywords:
Bladder;
Silk fibroin;
Adipose-derived stem cells;
Tissue engineering
- From:
Chinese Journal of Urology
2022;43(10):778-785
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the effect of tissue engineered bladder patch constructed by double-layer silk scaffold and adipose-derived stem cells (ADSCs) in the repair and reconstruction of bladder.Methods:This study was conducted from May 2020 to March 2021. The silk fibroin (SF) aqueous solution was obtained from silkworm cocoons, and a double-layer silk scaffold composed of silk fibroin film and silk fibroin sponge was further prepared. The rat ADSCs were isolated, cultured, and the ADSCs surface markers (CD29, CD90, CD45, CD106) were identified by flow cytometry. The ADSCs were planted on a double-layer silk scaffold to construct a tissue-engineered bladder patch. Thirty-six male SD rats were randomly divided into three groups: tissue engineered bladder patch group (SF-ADSCs group, n=15), double-layer silk scaffold group (SF group, n=15), control group ( n=6). The tissue engineered bladder patch (SF-ADSCs group) and double-layer silk scaffold (SF group) were wrapped on the omentum to promote vascularization. The vascularization was evaluated by HE and immunofluorescence staining. The wrapped tissue engineered bladder patch and double-layer silk scaffold were used to repair the defective bladder. In the control group (six rats), the incision was closed immediately after the bladder tissue fully exposed. At 4 weeks and 12 weeks after operation, the general morphology of bladder tissue and cystography were performed to evaluate the recovery of bladder morphology. After the graft was harvested, HE and Masson's trichrome staining and immunofluorescence staining were used to observe the regeneration of bladder wall tissue. Urodynamics was used to assess the recovery of bladder function at 12 weeks after operation. Results:The flow cytometry results confirmed that the isolated cells positively expressed CD29 and CD90, and there was no significant expression of CD45 and CD106. Gross observation and scanning electron microscope confirmed that the preparation of double-layer silk scaffold not only had a pore structure that was conducive to cell planting, but also had good toughness and was facilitated to surgical suture. The number (43.50±2.66) and area (0.73±0.03)% of vascular-like structures in the SF-ADSCs group after the omentum encapsulation was significantly higher than that in the SF group [(24.50±3.51), (0.55±0.05)%], and the difference was statistically significant ( P<0.05). At 4 weeks after bladder repair, the histological staining of the grafts in the SF-ADSCs and SF groups showed a large number of degraded fragments of double-layer silk scaffold. At 12 weeks, the morphology of the graft in the SF-ADSCs group showed uniform bladder morphology, which was similar to that of normal bladder tissue. Immunofluorescence staining showed that the continuous urothelial layer, abundant smooth muscle tissue, vascular structure and regenerated neurons could be observed in the SF-ADSCs group. Urodynamic test showed that the bladder maximum volume (0.74±0.03)ml and compliance (16.68±0.44)μl/cm H 2O in the SF-ADSCs group, which were better than that in the SF group [(0.47±0.05)ml, (14.89±0.37)μl/cm H 2O], but lower than that in the control group [(1.12±0.08)ml, (19.34±0.45)μl/cm H 2O], and the difference was statistically significant ( P<0.05). Conclusions:The tissue engineered bladder patch constructed with double-layer silk scaffolds and ADSCs could promote the morphological repair of bladder tissue, the regeneration of bladder wall structure and the recovery of bladder physiological function.