Transcriptomic comparative study on mouse liver injury caused by ultra-high dose rate irradiation and conventional irradiation
10.3760/cma.j.cn112271-20221130-00463
- VernacularTitle:超高剂量率照射和常规照射对小鼠肝脏辐射损伤的转录组学比较研究
- Author:
Tianyu YANG
1
;
Mengmeng XU
;
Wentao HU
;
Yongsheng ZHANG
;
Zhifei CAO
Author Information
1. 苏州大学附属第二医院病理科,苏州 215004
- Keywords:
Ultra-high dose rate irradiation;
Liver;
RNA sequence;
Gene expression
- From:
Chinese Journal of Radiological Medicine and Protection
2023;43(3):168-175
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To study the effects of FLASH irradiation (FLASH-RT) and conventional irradiation (CONV-RT) on gene expression profile in mouse liver, in order to provide theoretical basis of the potential mechanism of FLASH-RT.Methods:A total of 11 C57BL/6J male mice were divided into healthy control group (Ctrl group), CONV-RT group and FLASH-RT group according to random number table method. Mouse abdomen was treated with 12 Gy CONV-RT or FLASH-RT. Then the mice were killed by neck removal, and the liver tissues were collected to extract total RNA for transcriptome sequencing (RNA-Seq) that was then analyzed by bio-informatics analysis to investigate the changes of gene expression profiles. The mRNA expression levels of Stat1, Irf9 and Rela were verified by quantitative real-time PCR assay.Results:1 762 differentially expressed genes (DEGs) were identified in group FLASH-RT vs. CONV-RT. Among them, 660 genes were up-regulated and 1 102 genes were down-regulated. 1 918 DEGs were identified in groups FLASH-RT vs. Ctrl. Among them, 728 genes were up-regulated and 1 190 genes were down-regulated. 1 569 DEGs were identified in group CONV-RT vs. Ctrl. Among them, 1 046 genes were up-regulated and 523 genes were down-regulated. According to Gene Ontology (GO) analysis, these DEGs from groups FLASH-RT vs. CONV-RT were involved in various functions including defense response to virus, other organisms in cell components, adenylyltransferase activity in molecular function activity. These DEGs from group FLASH-RT vs. Ctrl were involved in various functions including defense response to other oranisms, endoplasmic reticulum chaperone complex, double-stranded RNA binding and so on. These DEGs from group FLASH-RT vs. CONV-RT were involved in several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including influenza A, Herpes simplex infection and so on. These DEGs from group FLASH-RT vs. Ctrl were involved in several KEGG pathways including influenza A, NOD-like receptor signaling pathway. Stat1 was likely to be activated by FLASH radiation. The quantitative real-time PCR assay showed that FLASH-RT obviously increased the mRNA expressions of Stat1, Irf9 and Rela ( t=6.62, 2.11, 1.67, P<0.05). Conclusions:FLASH-RT and CONV-RT could alter gene expression profiles in mouse liver tissues, and these DEGs are involved in multiple radiobiological functional pathways. In comparison with CONV-RT, FLASH-RT induces a low level of liver injury, which may due to hypoxia radiation resistance.