Mechano-Chemical Coupling in Living Organisms and Possible Road Map of Mechanomedicine
10.16156/j.1004-7220.2023.03.03
- VernacularTitle:生命系统中的力化耦合定量机制与力医学路径初探
- Author:
Baohua JI
1
Author Information
1. Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University
- Publication Type:Journal Article
- Keywords:
mechano-chemical coupling;
homeostasis;
tensional homeostasis;
mechanomedicine
- From:
Journal of Medical Biomechanics
2023;38(3):E433-E450
- CountryChina
- Language:Chinese
-
Abstract:
In view of fundamental challenges to the current life and medical researches, this paper analyzes the mechano-chemical coupling behaviors of living organisms at molecular, sub-cellular, cellular and tissue levels, attempting to explain the quantitative relationships in those mechano-chemical coupling behaviors at different scales. These quantitative relationships show that the structures of living organisms at various scales are closely related to their tensional homeostasis, i. e. , the structural changes will inevitably lead to the changes of tensional homeostasis; Conversely, the changes of the tensional homeostasis will inevitably lead to structural changes. The tensional homeostasis in living organisms stems from contractile force in actin cytoskeleton generated by the action of myosin II at molecular level, and the tensional homeostasis at higher structural levels is realized with the help of hierarchical structures of the living organisms. Therefore, the mechano-chemical coupling mechanisms and their corresponding quantitative relationships inspire scientists to develop a new way of understanding and dealing with diseases, called as mechanomedicine. Finally, the paper discusses possible ways / road maps of mechanomedicine to understand and treat diseases, in order to provide diagnostic and therapeutic ideas for this new medical paradigm.