Acteoside Inhibits Epithelial Mesenchymal Transformation of Hepatoma Cells Through Regulation of ERK1/2 Signaling Pathway
10.3971/j.issn.1000-8578.2023.22.0535
- VernacularTitle:阿克替苷通过调控ERK1/2信号通路抑制肝癌细胞上皮间质转化
- Author:
Qianqian YUAN
1
;
Yujing HE
;
Xue WEN
;
Jiucong ZHANG
;
Ying ZHENG
;
Lixia LU
;
Bin LI
;
Xiaohui YU
Author Information
1. Department of Gastroenterology, The 940th Hospital of Joint Service Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
- Publication Type:Research Article
- Keywords:
Acteoside;
HCCLM3 cells;
ERK1/2 signaling pathway;
Epithelial mesenchymal transformation;
Invasion;
Migration
- From:
Cancer Research on Prevention and Treatment
2023;50(1):12-17
- CountryChina
- Language:Chinese
-
Abstract:
Objective To investigate the effect and mechanism of acteoside (ACT) in inhibiting epithelial-mesenchymal transition (EMT) in human hepatoma HCCLM3 cells by regulating the ERK1/2 pathway. Methods CCK-8 assay was used to detect the effect of hepatocellular carcinoma cell proliferation. The invasion and migration of HCC cells were detected by scratch and Transwell tests. The mRNA and protein expression levels of the ERK1/2 signaling pathway and EMT-related genes (E-cadherin and N-cadherin) were detected by real-time PCR and Western blot analyses. Results ACT reduced the activity of HCCLM3 cells and inhibited the proliferation of HCC cells, and the effects had certain correlation with drug concentration and time. ACT inhibited the migration and invasion process of HCCLM3 cells in a concentration-dependent manner. ACT downregulated the mRNA and protein expression of genes related to the ERK1/2 signaling pathway. It increased the mRNA and protein expression levels of the EMT-related gene E-cadherin but decreased those of N-cadherin. Conclusion ACT could inhibit EMT and the invasion and migration of HCCLM3 cells in human hepatoma, and the underlying mechanism is closely related to the downregulation of the ERK1/2 signaling pathway.