Study on the method of automatically determining maxillary complex landmarks based on non-rigid registration algorithms.
10.3760/cma.j.cn112144-20230218-00053
- Author:
Zi Xiang GAO
1
;
Jing WANG
2
;
Ao Nan WEN
1
;
Yu Jia ZHU
1
;
Qing Zhao QIN
1
;
Yong WANG
1
;
Yi Jiao ZHAO
1
Author Information
1. Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
2. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
- Publication Type:Journal Article
- MeSH:
Male;
Female;
Humans;
Adult;
Imaging, Three-Dimensional/methods*;
Reproducibility of Results;
Algorithms;
Software;
Tomography, Spiral Computed;
Anatomic Landmarks/anatomy & histology*
- From:
Chinese Journal of Stomatology
2023;58(6):554-560
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To explore an automatic landmarking method for anatomical landmarks in the three-dimensional (3D) data of the maxillary complex and preliminarily evaluate its reproducibility and accuracy. Methods: From June 2021 to December 2022, spiral CT data of 31 patients with relatively normal craniofacial morphology were selected from those who visited the Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology. The sample included 15 males and 16 females, with the age of (33.3±8.3) years. The maxillary complex was reconstructed in 3D using Mimics software, and the resulting 3D data of the maxillary complex was mesh-refined using Geomagic software. Two attending physicians and one associate chief physician manually landmarked the 31 maxillary complex datasets, determining 24 anatomical landmarks. The average values of the three expert landmarking results were used as the expert-defined landmarks. One case that conformed to the average 3D morphological characteristics of healthy individuals' craniofacial bones was selected as the template data, while the remaining 30 cases were used as target data. The open-source MeshMonk program (a non-rigid registration algorithm) was used to perform an initial alignment of the template and target data based on 4 landmarks (nasion, left and right zygomatic arch prominence, and anterior nasal spine). The template data was then deformed to the shape of the target data using a non-rigid registration algorithm, resulting in the deformed template data. Based on the unchanged index property of homonymous landmarks before and after deformation of the template data, the coordinates of each landmark in the deformed template data were automatically retrieved as the automatic landmarking coordinates of the homonymous landmarks in the target data, thus completing the automatic landmarking process. The automatic landmarking process for the 30 target data was repeated three times. The root-mean-square distance (RMSD) of the dense corresponding point pairs (approximately 25 000 pairs) between the deformed template data and the target data was calculated as the deformation error of the non-rigid registration algorithm, and the intra-class correlation coefficient (ICC) of the deformation error in the three repetitions was analyzed. The linear distances between the automatic landmarking results and the expert-defined landmarks for the 24 anatomical landmarks were calculated as the automatic landmarking errors, and the ICC values of the 3D coordinates in the three automatic landmarking repetitions were analyzed. Results: The average three-dimensional deviation (RMSD) between the deformed template data and the corresponding target data for the 30 cases was (0.70±0.09) mm, with an ICC value of 1.00 for the deformation error in the three repetitions of the non-rigid registration algorithm. The average automatic landmarking error for the 24 anatomical landmarks was (1.86±0.30) mm, with the smallest error at the anterior nasal spine (0.65±0.24) mm and the largest error at the left oribital (3.27±2.28) mm. The ICC values for the 3D coordinates in the three automatic landmarking repetitions were all 1.00. Conclusions: This study established an automatic landmarking method for three-dimensional data of the maxillary complex based on a non-rigid registration algorithm. The accuracy and repeatability of this method for landmarking normal maxillary complex 3D data were relatively good.