Transcriptome analysis of Aedes aegypti larvae before and after treatment with fipronil
- Author:
WANG Kai-xuan
;
SUO Peng-hui
;
ZHAO Pei-zhen
;
LI Yao
;
ZHAO Jian-guo
- Publication Type:Journal Article
- Keywords:
Fipronil;
Aedes aegypti;
RNA-seq
- From:
China Tropical Medicine
2023;23(5):462-
- CountryChina
- Language:Chinese
-
Abstract:
Abstract: Objective In order to explore the application prospects of the phenyl pyrazole insecticide fipronil for mosquito control and identify potential target genes involved in the resistance of Aedes aegypti to fipronil, and lay the foundation for an in-depth study of the resistance mechanism of Aedes aegypti to fipronil. Methods Using Aedes aegypti sensitive strains as experimental materials, Aedes aegypti larvae were treated with fipronil, and the differences in gene expression of Aedes aegypti larvae before and after drug administration were compared at the transcriptome level using transcriptome sequencing combined with bioinformatics analysis, and the differential genes were analyzed. Results A total of 757 differentially expressed genes were identified between the fipronil-treated group and control group, including 217 and 540 up- and down-regulated genes, respectively. Among these, the expression of glutamate-gated chloride channel (GluCls) genes varied significantly before and after treatment. Gene ontology analysis revealed that differentially expressed genes were enriched in catalytic activity, binding, metabolic processes, and membrane-related functions, while KEGG pathway analysis indicated enrichment in biosynthesis, metabolism, and life regulation processes, while the glutathione metabolic pathway was enriched in 15 differentially expressed genes. Conclusions The transcriptome results revealed that GST gene expression was significantly upregulated in fipronil-treated Aedes aegypti larvae, indicating that GST gene is involved in the development of fipronil resistance in Aedes aegypti larvae. In addition, GluCls gene expression was also significantly different before and after treatment, suggesting that GluCls migh be a potential target receptor for fipronil resistance in Aedes aegypti. As GluCls is an ideal target receptor found only in invertebrates, this discovery provides a reference and basis for further exploration of the toxicological mechanism of fipronil on Aedes aegypti.
- Full text:4.Transcriptome analysis of Aedes aegypti larvae before and after treatment with fipronil.pdf