Impact of Pulmonary Arterial Elastance on Right Ventricular Mechanics and Exercise Capacity in Repaired Tetralogy of Fallot
- Author:
Soo-Jin KIM
1
;
Mei Hua LI
;
Chung Il NOH
;
Seong-Ho KIM
;
Chang-Ha LEE
;
Ja-Kyoung YOON
Author Information
- Publication Type:Original Research
- From:Korean Circulation Journal 2023;53(6):406-417
- CountryRepublic of Korea
- Language:English
-
Abstract:
Background and Objectives:Pathophysiological changes of right ventricle (RV) after repair of tetralogy of Fallot (TOF) are coupled with a highly compliant low-pressure pulmonary artery (PA) system. This study aimed to determine whether pulmonary vascular function was associated with RV parameters and exercise capacity, and its impact on RV remodeling after pulmonary valve replacement.
Methods:In a total of 48 patients over 18 years of age with repaired TOF, pulmonary arterial elastance (Ea), RV volume data, and RV-PA coupling ratio were calculated and analyzed in relation to exercise capacity.
Results:Patients with a low Ea showed a more severe pulmonary regurgitation volume index, greater RV end-diastolic volume index, and greater effective RV stroke volume (p=0.039, p=0.013, and p=0.011, respectively). Patients with a high Ea had lower exercise capacity than those with a low Ea (peak oxygen consumption [peak VO2 ] rate: 25.8±7.7 vs. 34.3±5.5 mL/kg/min, respectively, p=0.003), while peak VO2 was inversely correlated with Ea and mean PA pressure (p=0.004 and p=0.004, respectively). In the univariate analysis, a higher preoperative RV end-diastolic volume index and RV end-systolic volume index, left ventricular end-systolic volume index, and higher RV-PA coupling ratio were risk factors for suboptimal outcomes. Preoperative RV volume and RV-PA coupling ratio reflecting the adaptive PA system response are important factors in optimal postoperative results.
Conclusions:We found that PA vascular dysfunction, presenting as elevated Ea in TOF, may contribute to exercise intolerance. However, Ea was inversely correlated with pulmonary regurgitation (PR) severity, which may prevent PR, RV dilatation, and left ventricular dilatation in the absence of significant pulmonary stenosis.