Associations of Particulate Matter Exposures With Brain Gray Matter Thickness and White Matter Hyperintensities: Effect Modification by Low-Grade Chronic Inflammation
10.3346/jkms.2023.38.e159
- Author:
Jaelim CHO
1
;
Heeseon JANG
;
Young NOH
;
Seung-Koo LEE
;
Sang-Baek KOH
;
Sun-Young KIM
;
Changsoo KIM
Author Information
1. Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
- Publication Type:Original Article
- From:Journal of Korean Medical Science
2023;38(16):e159-
- CountryRepublic of Korea
- Language:English
-
Abstract:
Background:Numerous studies have shown the effect of particulate matter exposure on brain imaging markers. However, little evidence exists about whether the effect differs by the level of low-grade chronic systemic inflammation. We investigated whether the level of c-reactive protein (CRP, a marker of systemic inflammation) modifies the associations of particulate matter exposures with brain cortical gray matter thickness and white matter hyperintensities (WMH).
Methods:We conducted a cross-sectional study of baseline data from a prospective cohort study including adults with no dementia or stroke. Long-term concentrations of particulate matter ≤ 10 µm in diameter (PM10) and ≤ 2.5 µm (PM2.5) at each participant’s home address were estimated. Global cortical thickness (n = 874) and WMH volumes (n = 397) were estimated from brain magnetic resonance images. We built linear and logistic regression models for cortical thickness and WMH volumes (higher versus lower than median), respectively. Significance of difference in the association between the CRP group (higher versus lower than median) was expressed as P for interaction.
Results:Particulate matter exposures were significantly associated with a reduced global cortical thickness only in the higher CRP group among men (P for interaction = 0.015 for PM10 and 0.006 for PM2.5). A 10 μg/m3 increase in PM10 was associated with the higher volumes of total WMH (odds ratio, 1.78; 95% confidence interval, 1.07–2.97) and periventricular WMH (2.00; 1.20–3.33). A 1 μg/m3 increase in PM2.5 was associated with the higher volume of periventricular WMH (odds ratio, 1.66; 95% confidence interval, 1.08–2.56). These associations did not significantly differ by the level of high sensitivity CRP.
Conclusion:Particulate matter exposures were associated with a reduced global cortical thickness in men with a high level of chronic inflammation. Men with a high level of chronic inflammation may be susceptible to cortical atrophy attributable to particulate matter exposures.