Diagnostic Assessment of Deep Learning Algorithms for Frozen Tissue Section Analysis in Women with Breast Cancer
- Author:
Young-Gon KIM
1
;
In Hye SONG
;
Seung Yeon CHO
;
Sungchul KIM
;
Milim KIM
;
Soomin AHN
;
Hyunna LEE
;
Dong Hyun YANG
;
Namkug KIM
;
Sungwan KIM
;
Taewoo KIM
;
Daeyoung KIM
;
Jonghyeon CHOI
;
Ki-Sun LEE
;
Minuk MA
;
Minki JO
;
So Yeon PARK
;
Gyungyub GONG
Author Information
- Publication Type:Original Article
- From:Cancer Research and Treatment 2023;55(2):513-522
- CountryRepublic of Korea
- Language:English
-
Abstract:
Purpose:Assessing the metastasis status of the sentinel lymph nodes (SLNs) for hematoxylin and eosin–stained frozen tissue sections by pathologists is an essential but tedious and time-consuming task that contributes to accurate breast cancer staging. This study aimed to review a challenge competition (HeLP 2019) for the development of automated solutions for classifying the metastasis status of breast cancer patients.
Materials and Methods:A total of 524 digital slides were obtained from frozen SLN sections: 297 (56.7%) from Asan Medical Center (AMC) and 227 (43.4%) from Seoul National University Bundang Hospital (SNUBH), South Korea. The slides were divided into training, development, and validation sets, where the development set comprised slides from both institutions and training and validation set included slides from only AMC and SNUBH, respectively. The algorithms were assessed for area under the receiver operating characteristic curve (AUC) and measurement of the longest metastatic tumor diameter. The final total scores were calculated as the mean of the two metrics, and the three teams with AUC values greater than 0.500 were selected for review and analysis in this study.
Results:The top three teams showed AUC values of 0.891, 0.809, and 0.736 and major axis prediction scores of 0.525, 0.459, and 0.387 for the validation set. The major factor that lowered the diagnostic accuracy was micro-metastasis.
Conclusion:In this challenge competition, accurate deep learning algorithms were developed that can be helpful for making a diagnosis on intraoperative SLN biopsy. The clinical utility of this approach was evaluated by including an external validation set from SNUBH.