Effect of Qiling Baitouweng Tang on Proliferation and Apoptosis in Diffuse Large B-cell Lymphoma Through JAK2/STAT3 Signaling Pathway
10.13422/j.cnki.syfjx.20222430
- VernacularTitle:基于JAK2/STAT3信号通路探讨芪苓白头翁汤对弥漫大B细胞淋巴瘤细胞增殖和凋亡的影响
- Author:
Ning LIU
1
;
Xinzhuo ZHAN
1
;
Hui YU
2
;
Xiaoli CHEN
2
;
Xiangtu KONG
2
;
Haiwen NI
2
Author Information
1. The First School of Clinical Medicine of Nanjing University of Chinese Medicine, Nanjing 210023, China
2. Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Publication Type:Journal Article
- Keywords:
Qiling Baitouweng Tang;
diffuse large B-cell lymphoma (DLBCL);
OCI-LY10 cell;
U2932 cell;
proliferation;
cell cycle;
apoptosis;
janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3);
interleukin-10 (IL-10)
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2023;29(13):10-19
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the effect of Qiling Baitouweng Tang (QLBTWT) on proliferation and apoptosis, Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway and interleukin-10 (IL-10) in diffuse large B-cell lymphoma (DLBCL). MethodWith human DLBCL cells OCI-LY10 and U2932 as research objects, cell proliferation was detected by cell counting kit-8 (CCK-8) assay. After treatment with 0, 4.6, 9.3, 18.7, 37.5, 75, 150 mg·L-1 QLBTWT for 24 h, the half-inhibitory concentration (IC50) of OCL-LY10 and U2932 cells was calculated to be 9.33, 16.13 mg·L-1, respectively, based on which, 9.5, 19, 38 mg·L-1 QLBTWT were selected for subsequent experiments. After 0, 9.5, 19, 38 mg·L-1 QLBTWT treatment for 24 h, the zymogen activities of Caspase-3, Caspase-8 and Caspase-9 in OCI-LY10 and U2932 cells were detected using corresponding activity assay kits (colorimetric), and the IL-10 expression was detected by enzyme-linked immuno sorbent assay (ELISA). The apoptosis rate and cell cycle of OCI-LY10 and U2932 cells treated with different concentrations of QLBTWT for 24 h were detected by flow cytometry. The expressions of apoptosis-related proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved poly adenosine diphosphate ribose polymerase (cleaved PARP), cleaved Caspase-3], JAK2, STAT3, phospho-JAK2 (p-JAK2), phospho-STAT3 (p-STAT3) pathway proteins, and c-Myc protein in OCL-LY10 and U2932 cells after 24 h treatment with 0, 9.5, 19, 38 mg·L-1 QLBTWT were all tested by Western blot. ResultAfter QLBTWT treatment on OCI-LY10 and U2932 cells for 24 h, cell proliferation was inhibited in each QLBTWT group compared with that in the control group (P<0.05, P<0.01). The zymogens of Caspase-3, Caspase-8 and Caspase-9 were activated (P<0.01), and there was an increase in cell apoptosis (P<0.05, P<0.01) and cell cycle arrest at Gap phase1 (G1) phase in 9.5, 19 and 38 mg·L-1 QLBTWT group (P<0.05, P<0.01). After 9.5, 19 and 38 mg·L-1 QLBTWT treatment on OCI-LY10 and U2932 cells for 24 h, the expressions of Bcl-2, p-JAK2 and p-STAT3 proteins were decreased (P<0.01), and the expressions of Bax, cleaved PARP and cleaved Caspase-3 proteins were increased (P<0.01), but no significant change was observed in the expressions of JAK2 and STAT3 proteins. Compared with the conditions in the control group, the expressions of c-Myc, p-JAK2, and p-STAT3 proteins were down-regulated in 19 mg·L-1 QLBTWT group and 19 mg·L-1 QLBTWT+10 μg·L-1 IL-10 group (P<0.05, P<0.01), and up-regulated in 10 μg·L-1 IL-10 group (P<0.05, P<0.01), while there was no difference in JAK2/STAT3 proteins. ConclusionQLBTWT can inhibit proliferation and induce apoptosis of human DLBCL cells OCI-LY10 and U2932, and the potential mechanism may be related to the regulation of JAK2/STAT3 signaling pathway.