Changes of RAGE/p38MAPK/NF-κB signaling pathway in brain tissue of subchronic fluorosis rats and protective effects of Ginkgo biloba extract and RAGE antagonist
- VernacularTitle:亚慢性氟中毒大鼠脑组织RAGE/p38MAPK/NF-κB信号通路的变化及银杏叶提取物和RAGE阻断剂的保护作用
- Author:
Qiuzhe LIANG
1
;
Hongmei LI
1
;
Jie DENG
2
;
Ting ZHANG
2
;
Yanlin MA
1
;
Kailin ZHANG
1
Author Information
- Publication Type:Experiment
- Keywords: subchronic fluorosis; brain tissue; receptor of advanced glycation end-products; Ginkgo biloba extract; antagonist
- From: Journal of Environmental and Occupational Medicine 2023;40(5):577-582
- CountryChina
- Language:Chinese
- Abstract: Background Fluorine accumulates in the brain tissue after long-term excessive intake and subsequently cause nerve damage and decline of learning and memory ability. Receptor of advanced glycation end-products (RAGE)/p38 mitogen-activated protein kinase (p38MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway is considered to be involved in the associated mechanism. Objective To study the changes of RAGE/ p38MAPK/ NF-κB signaling pathway in rats with subchronic fluorosis, and to explore the protective effects of extract of Ginkgo biloba 761 (EGb761) and RAGE antagonist (FPS-ZM1) on neuromemory ability. Methods Ninety male clean SD rats were divided into 9 groups with 10 rats in each group. The modeling period was 6 months. Control group (C group): free drinking tap water (fluoride content <0.5 mg·L−1), low- and high-dose fluoride groups (LF group, HF group): free drinking tap water with 10 or 50 mg·L−1 fluoride; intervention group of Ginkgo biloba extract (CE, LFE, and HFE groups): on the basis of the C group, LF group, and HF group, 100 mg·kg−1·d−1 EGb761 was given daily via intragastric administration; FPS-ZM1 intervention groups (CF, LFF, and HFF groups): 7 d before the end of modeling, 1 mg·kg−1·d−1 FPS-ZM1 was injected intraperitoneally daily on the basis of the C group, LF group, and HF group. The contents of fluoride in brain and blood of each group were detected. The learning and memory ability was tested by water maze experiment. The histopathologic changes of the hippocampus were detected by Nissl staining. The protein expression levels of RAGE and its ligand high mobility group protein B1 (HMGB1), NF-κB, p38MAPK, phospho-p38MAPK (p-p38MAPK), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α) in brain tissue were detected by Western blotting. The mRNA expression levels of RAGE, HMGB1, and p38MAPK were detected by quantitative real-time PCR. Results Compared with the C group, the contents of blood fluoride and brain fluoride in the LF and the HF groups were increased (P<0.05). The results of the water maze experiment showed that, compared with the C group, the escape latency time of the LF group and the HF group was longer and the crossing times were reduced; compared with the HF group, the escape latency time of the HFE group and the HFF group was shortened, and the crossing times were increased (P<0.05). The Nissl staining results showed that the number of Nissl body in the HF group decreased compared with the C group; compared with the HF group, the number of Nissl body in the HFE group and the HFF group increased. The Western blotting results showed that compared with the relative protein expression levels of RAGE, HMGB1, NF-κB, p38MAPK, p-p38MAPK, IL-6, and TNF-α in the C group , the levels of above indicators in the HF group and the levels of RAGE, HMGB1, NF-κB, p-p38MAPK, and IL-6 in the LF group were up-regulated (P<0.05); compared with the HF group, the levels of above indicators in the HFE group and the HFF group were all down-regulated (P<0.05); compared with the relative protein expression levels of RAGE and HMGB1 in the LF group, the levels in the LFE group and the LFF group were all down-regulated (P<0.05). The quantitative real-time PCR results showed that compared with the C group, the mRNA expression levels of RAGE and HMGB1 in the LF group and the HF group were up-regulated; compared with the LF group, the mRNA expression levels of RAGE in the LFE group and the LFF group were down-regulated ; compared with the HF group, the mRNA expression levels of RAGE and HMGB1 in the HFE group and the HFF group were down-regulated (P<0.05). Conclusion The central nervous system injury caused by subchronic fluorosis may be related to the activation of RAGE/p38-MAPK/NF-κB signaling pathway, which can impair the learning and memory ability of rats, while EGb761 and FPS-ZM1 may have certain protective effects on the nerve injury.