Influence of antimicrobial peptide biofunctionalized TiO2 nanotubes on the biological behavior of human keratinocytes and its antibacterial effect.
10.3760/cma.j.cn112144-20221023-00550
- Author:
Yi LI
1
;
Jin Jin WANG
2
;
Yi De HE
1
;
Min XU
1
;
Xin Yan LI
1
;
Bo Ya XU
1
;
Yu Mei ZHANG
1
Author Information
1. Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University & State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Xi'an 710032, China.
2. Department of Periodontology, School of Stomatology, The Fourth Military Medical University & State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi'an 710032, China.
- Publication Type:Journal Article
- MeSH:
Humans;
Titanium/chemistry*;
Antimicrobial Peptides;
Cathelicidins;
Sincalide;
Anti-Bacterial Agents/pharmacology*;
Nanotubes/chemistry*;
Dental Materials;
Bacteria;
Keratinocytes;
Surface Properties
- From:
Chinese Journal of Stomatology
2023;58(2):165-173
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To fabricate TiO2 nanotube material functionalized by antimicrobial peptide LL-37, and to explore its effects on biological behaviors such as adhesion and migration of human keratinocytes (HaCaT) and its antibacterial properties. Methods: The TiO2 nanotube array (NT) was constructed on the surface of polished titanium (PT) by anodization, and the antimicrobial peptide LL-37 was loaded on the surface of TiO2 nanotube (LL-37/NT) by physical adsorption. Three samples were selected by simple random sampling in each group. Surface morphology, roughness, hydrophilicity and release characteristics of LL-37 of the samples were analyzed with a field emission scanning electron microscope, an atomic force microscope, a contact angle measuring device and a microplate absorbance reader. HaCaT cells were respectively cultured on the surface of three groups of titanium samples. Each group had 3 replicates. The morphology of cell was observed by field emission scanning electron microscope. The number of cell adhesion was observed by cellular immunofluorescence staining. Cell counting kit-8 (CCK-8) assay was used to detect cell proliferation. Wound scratch assay was used to observe the migration of HaCaT. The above experiments were used to evaluate the effect of each group on the biological behavior of HaCaT cells. To evaluate their antibacterial effects, Porphyromonas gingivalis (Pg) was respectively inoculated on the surface of three groups of titanium samples. Each group had 3 replicates. The morphology of bacteria was observed by field emission scanning electron microscope. Bacterial viability was determined by live/dead bacterial staining. Results: A uniform array of nanotubes could be seen on the surface of titanium samples in LL-37/NT group, and the top of the tube was covered with granular LL-37. Compared with PT group [the roughness was (2.30±0.18) nm, the contact angle was 71.8°±1.7°], the roughness [(20.40±3.10) and (19.10±4.11) nm] and hydrophilicity (the contact angles were 22.4°±3.1° and 25.3°±2.2°, respectively) of titanium samples increased in NT and LL-37/NT group (P<0.001). The results of in vitro release test showed that the release of antimicrobial peptide LL-37 was characterized by early sudden release (1-4 h) and long-term (1-7 d) slow release. With the immunofluorescence, more cell attachment was found on NT and LL-37/NT than that on PT at the first 0.5 and 2.0 h of culture (P<0.05). The results of CCK-8 showed that there was no significant difference in the proliferation of cells among groups at 1, 3 and 5 days after culture. Wound scratch assay showed that compared with PT and NT group, the cell moved fastest on the surface of titanium samples in LL-37/NT group at 24 h of culture [(96.4±4.9)%] (F=35.55, P<0.001). A monolayer cells could be formed and filled with the scratch in 24 h at LL-37/NT group. The results of bacterial test in vitro showed that compared with the PT group, the bacterial morphology in the NT and LL-37/NT groups was significantly wrinkled, and obvious bacterial rupture could be seen on the surface of titanium samples in LL-37/NT group. The results of bacteria staining showed that the green fluorescence intensity of titanium samples in LL-37/NT group was the lowest in all groups (F=66.54,P<0.001). Conclusions: LL-37/NT is beneficial to the adhesion and migration of HaCaT cells and has excellent antibacterial properties, this provides a new strategy for the optimal design of implant neck materials.