The effect of Helicobacter pylori infection on duodenal bulbar microbiota in children with duodenal ulcer.
10.3760/cma.j.cn112140-20220328-00251
- Author:
Wei ZHENG
1
;
Ke Rong PENG
1
;
Fu Bang LI
1
;
Hong ZHAO
1
;
Mi Zu JIANG
2
Author Information
1. Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
2. Department of Gastroenterology and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
- Publication Type:Journal Article
- MeSH:
Male;
Female;
Humans;
Child;
Duodenal Ulcer/diagnosis*;
Helicobacter Infections/complications*;
Helicobacter pylori/genetics*;
Prospective Studies;
Microbiota
- From:
Chinese Journal of Pediatrics
2023;61(1):49-55
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To investigate the characteristics of duodenal bulbar microbiota in children with duodenal ulcer and Helicobacter pylori (Hp) infection. Methods: This prospective cohort study enrolled 23 children with duodenal ulcers diagnosed by gastroscopy who were admitted to the Children's Hospital of Zhejiang University School of Medicine due to abdominal pain, abdominal distension, and vomiting from January 2018 to August 2018. They were divided into Hp-positive and Hp-negative groups according to the presence or absence of Hp infection. Duodenal bulbar mucosa was sampled to detect the bacterial DNA by high-throughput sequencing. The statistical difference in α diversity and β diversity, and the relative abundance in taxonomic level between the two groups were compared. Microbial functions were predicted using the software PICRUSt. T-test, Rank sum test or χ2 test were used for comparison between the two groups. Results: A total of 23 children diagnosed with duodenal ulcer were enrolled in this study, including 15 cases with Hp infection ((11.2±3.3) years of age, 11 males and 4 females) and 8 cases without Hp infection ((10.1±4.4) years of age, 6 males and 2 females). Compared with Hp-negative group, the Hp-positive group had higher Helicobacter abundance (0.551% (0.258%, 5.368%) vs. 0.143% (0.039%, 0.762%), Z=2.00, P=0.045) and lower abundance of Fusobacterium, Streptococcus and unclassified- Comamonadaceae (0.010% (0.001%, 0.031%) vs. 0.049% (0.011%, 0.310%), Z=-2.24, P=0.025; 0.031% (0.015%, 0.092%) vs. 0.118% (0.046%, 0.410%), Z=-2.10, P=0.036; 0.046% (0.036%, 0.062%) vs. 0.110% (0.045%, 0.176%), Z=-2.01, P=0.045). Linear discriminant analysis (LDA) effect sized showed that at the genus level, only Helicobacter was significantly enriched in Hp-positive group (LDA=4.89, P=0.045), while Streptococcus and Fusobacterium significantly enriched in Hp-negative group (LDA=3.28, 3.11;P=0.036,0.025, respectively). PICRUSt microbial function prediction showed that the expression of oxidative phosphorylation and disease-related pathways (pathways in cancer, renal cell carcinoma, amoebiasis, type 1 diabetes mellitus) in Hp-positive group were significantly higher than that in Hp-negative group (all P<0.05), while the expression of pathways such as energy metabolism and phosphotransferase system pathways were significantly lower than that in Hp-negative group (all P<0.05). Conclusion: In children with Hp-infected duodenal ulcers, the mucosal microbiota of the duodenal bulb is altered, characterized by an increased abundance of Helicobacter and a decreased abundance of Clostridium and Streptococcus, and possibly alters the biological function of the commensal microbiota through specific metabolic pathways.