- VernacularTitle:外源性三价铁离子对SH-SY5Y细胞tau蛋白磷酸化和聚集的影响
- Author:
Zhina ZHANG
1
,
2
;
Zhuoran WANG
2
;
Mingxuan YANG
2
;
Yanli ZHANG
3
;
Guowei LIU
4
;
Shu FANG
5
;
Qiang SU
2
;
Qiao NIU
6
;
Junhong GUO
1
,
2
Author Information
- Publication Type:Specialcolumn:Effectsofenvironmentalhazardsonthenervoussystem
- Keywords: SH-SY5Y cell; exogenous trivalent iron ion; neurofibrillary tangle; tau hyperphosphorylation; tau aggregation
- From: Journal of Environmental and Occupational Medicine 2023;40(3):261-267
- CountryChina
- Language:Chinese
- Abstract: Background A large amount of iron deposition in the brain can cause neuronal damage by inducing oxidative stress, neuroinflammation, and abnormal mitochondrial function. In addition, iron deposition is also reported to be closely related to the pathogenesis of Alzheimer's disease (AD). The neurofibrillary tangles aggregated by tau hyperphosphorylation are one of the important pathological features of AD. Objective To investigate potential effect of exogenous trivalent iron ions on neuronal activity in human neuroblastoma (SH-SY5Y) cells and tau hyperphosphorylation and aggregation. Methods SH-SY5Y cells were treated with ferric chloride (FeCl3) at four concentrations (10, 100, 200, and 400 mg·L−1). Cell survival rate was then detected by CCK8 assay. Intracellular iron content was determined prussian blue (Perl's) by iron staining after 24 h exposure to FeCl3 at 10 or 200 mg·L−1. Transfection of tau-P301L plasmid was conducted to construct an AD-like cell model for tau overexpression. The differences in the expression of the phosphorylated tau (p-tau) protein in SH-SY5Y cells and SH-SY5Y cells with tau overexpression were detected by Western blotting after 24 h exposure to FeCl3 at 10 and 200 mg·L−1. After dilution with phosphate buffered saline (PBS), FeCl3, human tauR3, and FeCl3 + tauR3 were incubated at 37℃, and the fluorescence intensity reflecting tau aggregation level was measured by thioflavin T(ThT) method at 12, 24, 36, 48, 60, 72, 84, and 96 h, respectively. Meanwhile, after 96 h coincubation of FeCl3 and tauR3, the fibers formed by tau aggregation were observed under a transmission electron microscope (TEM). Results After 24 h of FeCl3 exposure, the cell survival rate of SH-SY5Y cells among all groups was statistically different (F=8.63, P<0.01). The cell survival rates in the 200 and 400 mg·L−1 groups were 80.1% and 68.7% of the control group, respectively (P<0.05). Compared with the control group, the nuclei of the 200 mg·L−1 FeCl3 group were mainly yellowish-brown after iron staining and the positive cell rate was up-regulated by 12.9% (P<0.01). After 24 h of FeCl3 exposure , the p-tau (Ser396) protein expression was statistically different among all groups (F=11.6, P<0.01). Compared with the control group, the p-tau protein expression level of SH-SY5Y cells in the 200 mg·L−1 group was up-regulated by 72.7% (P<0.01). After FeCl3-treated SH-SY5Y cells with tau overexpression for 24 h, the p-tau (Ser396) protein expression was statistically different among all groups (F=27.8, P<0.01). Compared with the tau group, the p-tau (Ser396) protein expression level of SH-SY5Y cells in the tau + 200 mg·L−1 group was up-regulated by 44.6% (P<0.05). Compared with the tauR3 group, the fluorescence intensities in the 84 and 96 h tauR3 + FeCl3 groups were up-regulated by 49.9% and 53.7% (P<0.01) respectively. After 96 h of coincubation, compared with the tauR3 group, FeCl3 + tauR3 aggravated tau aggregation and formed fiber deposition under TEM. Conclusion Exogenous trivalent iron ions may inhibit SH-SY5Y cell viability, promote the phosphorylation of tau in SH-SY5Y cells transfected with tau-P301L plasmid, and aggravate tauR3 aggregation and fiber production.