HPLC Fingerprint Analysis of Benchmark Sample of Yanghetang
10.13422/j.cnki.syfjx.20220759
- VernacularTitle:经典名方阳和汤基准样品的HPLC指纹图谱分析
- Author:
Zekang ZHANG
1
;
Changhai WANG
1
;
Yueying ZHAO
1
;
Qing ZHANG
1
;
Jing PENG
1
;
Shouying DU
1
;
Jie BAI
1
;
Yang LU
1
Author Information
1. School of Chinese Materia Medica,Beijing University of Chinese Medicine,Beijing 102488,China
- Publication Type:Journal Article
- Keywords:
famous classical formulas;
Yanghetang;
benchmark sample;
high performance liquid chromatography(HPLC) fingerprint;
cluster analysis;
principal component analysis(PCA);
partial least squares-discriminant analysis(PLS-DA)
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2023;29(10):13-20
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo establish a high performance liquid chromatography(HPLC) fingerprint of Yanghetang benchmark sample, and evaluate its quality with chemometric methods, so as to provide a reference for the quality control of this benchmark sample. MethodHPLC was used to establish the fingerprint of Yanghetang benchmark sample with ZORBAX SB-C18 column(4.6 mm×250 mm, 5 μm), the mobile phase was consisted of acetonitrile(A) -0.05% phosphoric acid aqueous solution (containing 0.05% triethylamine solution)(B) for gradient elution(0-5 min, 2%-3%A; 5-15 min, 3%-5%A; 15-65 min, 5%-30%A; 65-90 min, 30%-70%A), the flow rate was 1.0 mL·min-1, the column temperature was 35 ℃, and the detection wavelength was 210, 260 nm. Traditional Chinese Medicine(TCM) Chromatographic Fingerprint Similarity Evaluation System (2012 edition) combined with cluster analysis, principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were used to evaluate the quality differences between different batches of Yanghetang benchmark samples, and to find the main chemical components responsible for the quality differences. ResultHPLC fingerprint of Yanghetang benchmark sample was established, 13 common peaks were identified and attributed to each common peak, including peaks 2 and 8 from Rehmanniae Radix Praeparata, peaks 10 and 11 from Cinnamomi Cortex, peaks 1, 3-6 from fried Sinapis Semen, peak 13 from Ephedrae Herba, and peaks 7, 9, 12 from Glycyrrhizae Radix et Rhizoma. Eight of them were identified by comparing with control substance, which were 5-hydroxymethylfurfural(peak 2), sinapine thiocyanate(peak 4), glycyrrhizin(peak 7), verbascoside(peak 8), cinnamic acid(peak 10), cinnamaldehyde(peak 11), glycyrrhizic acid(peak 12) and ephedrine hydrochloride(peak 13). The similarities of the HPLC fingerprints of 15 batches of Yanghetang benchmark samples with the control fingerprint were all greater than 0.80. The three chemometric methods could classify the samples into two categories. Eight differential components were screened out, among which 5-hydroxymethylfurfural, sinapine thiocyanate, verbascoside and ephedrine hydrochloride were identified. ConclusionThe established fingerprint analysis method is accurate, stable and reproducible, which basically reflects the overall chemical composition of Yanghetang benchmark sample, and can provide a basis for establishment of quality standards for compound preparations of this famous classical formula.