Efficacy Evaluation of Ethyl Acetate Fraction of Ipomoea muricatum in Prevention and Treatment of Alcoholic Gastric Ulcer
10.13422/j.cnki.syfjx.20230141
- VernacularTitle:丁香茄乙酸乙酯部位防治酒精性胃溃疡的药效评价
- Author:
Xi XIANG
1
;
Hui GUO
1
;
Man GONG
1
;
Yang ZHANG
1
;
Liping DAI
1
;
Erping XU
1
Author Information
1. School of Pharmacy, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Publication Type:Journal Article
- Keywords:
Ipomoea muricatum;
gastric ulcer;
network pharmacology;
mechanism of action;
mitogen activated protein kinase (MAPK) signaling pathway
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2023;29(7):105-114
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the feasibility of ethyl acetate fraction of Ipomoea muricatum (IM-EA) in the prevention and treatment of alcoholic gastric ulcer (GU) and explore its mechanism of action based on network pharmacology and experimental verification. MethodForty SD rats were randomly divided into a control group, a model group, a ranitidine group (2.7 mg·kg-1), and low- and high-dose IM-EA groups (30,60 mg·kg-1) after adaptive feeding for 7 days. The GU model was replicated by hydrochloric acid in absolute ethanol (150 mmol·L-1) in rats after prophylactic administration for one week. Hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining were used to preliminarily evaluate the efficacy of IM-EA in the prevention and treatment of GU. Lead compounds of IM-EA were screened out by ADMET, and the SwissTarget platform was used to identify the potential targets for these compounds. GU-related targets were collected through DisGeNET, OMIM, and GeneCards databases, which were mapped to potential IM-EA targets to obtain the potential targets of IM-EA against GU. The STRING database was used to construct the protein-protein interaction (PPI) network to screen the hub targets, and the DAVID platform was used to annotate the biological functions of common targets to explore the underlying mechanism of IM-EA against GU. Autodock Vina software was used for the preliminary verification of the computer simulation. The serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 and the content of prostaglandin E2 (PGE2), matrix metalloproteinase-9 (MMP-9), and superoxide dismutase (SOD) in the gastric tissues were determined by enzyme-linked immunosorbent assay (ELISA). The relative expression levels of core proteins in the mitogen-activated protein kinase (MAPK) signaling pathway, such as Jun oncoprotein, extracellular signal-regulated kinase (ERK), and p38, in the gastric tissues were detected by Western blot. ResultAs revealed by the results of animal experiments, compared with the control group, the model group showed significantly damaged gastric tissues and reduced secretion of gastric mucus. Compared with the model group, the groups with drug intervention showed reduced ulcer areas in the gastric tissues (P<0.01) and improved gastric histopathological status and gastric mucus secretion, suggesting that IM-EA was effective in the prevention and treatment of GU. Sixteen lead compounds of IM-EA were screened out by ADMET, and 257 potential targets of IM-EA against GU were obtained. The hub nodes in the PPI network included targets of TNF-α, protein kinase B1 (Akt1), tumor protein 53 (TP53), epidermal growth factor receptor (EGFR), and ERK. Biological functional annotation and molecular docking results suggested that the MAPK signaling pathway potentially played a key role in the prevention and treatment of GU by IM-EA, which was synergistic with the vascular endothelial growth factor (VEGF) signaling pathway, phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, and nuclear factor (NF)-κB signaling pathway in anti-inflammation, anti-oxidation, and damage repair. The pharmacological experiment results showed that compared with the control group, the model group showed increased serum IL-6 content (P<0.01), an increasing trend of TNF-α content, increased MMP-9 content in the gastric tissues (P<0.01), and decreased SOD content (P<0.05). Compared with the model group, the IM-EA groups showed decreased TNF-α and IL-6 levels in the serum and PGE2 and MMP-9 levels in the gastric tissues (P<0.01), and increased SOD content in the gastric tissues (P<0.01). Compared with the control group, the model group showed up-regulated expression of p-p38, p-Jun, and p-ERK in the gastric tissues (P<0.01) and up-regulated p38 and Jun (P<0.01). Compared with the model group, the IM-EA groups showed down-regulated p-p38, p-Jun, p-ERK, and p38 in the gastric tissues (P<0.01) and up-regulated relative expression of Jun and ERK (P<0.05). ConclusionIM-EA has a remarkable effect in the prevention and treatment of alcoholic gastric injury, which may be achieved through the mechanisms of anti-inflammation, anti-oxidation, and wound repair mediated by the MAPK signaling pathway.