Role of exosomes in M2 microglia-induced reduction of oxygen-glucose deprivation and restoration injury to astrocytes
10.3760/cma.j.cn131073.20220311.00820
- VernacularTitle:外泌体在M2型小胶质细胞减轻星形胶质细胞氧糖剥夺-复糖复氧损伤中的作用
- Author:
Jingyan CHEN
1
;
Jia ZHANG
;
Hong WANG
;
Rui DONG
;
Wenjie LIU
;
Kaiyue SHAN
;
Gaofeng ZHANG
;
Huailong CHEN
;
Mingshan WANG
Author Information
1. 南京医科大学青岛临床医学院 青岛市市立医院麻醉科,青岛 266071
- Keywords:
Exosome;
Astrocytes;
Microglia;
Reperfusion injury
- From:
Chinese Journal of Anesthesiology
2022;42(8):985-990
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To evaluate the role of exosomes in M2 microglia-induced reduction of oxygen-glucose deprivation and restoration (OGD/R) injury to astrocytes.Methods:The primary astrocytes were cultured in vitro to the logarithmic growth phase and divided into 5 groups ( n=14 each) using a random number table method: control group (group C), OGD/R group (group O), OGD/R+ M2 microglia group (O+ M2 group), OGD/R+ M2 microglia+ GW4869 group (O+ M2+ G group) and OGD/R+ M2 microglia-derived exosome group (O+ M2-E group). Cells in group C were cultured routinely.Cells in group O were subjected to 4 h of oxygen-glucose deprivation (OGD) and 24 h of restoration of O 2-glucose supply.In group O+ M2, cells were subjected to 4 h of OGD, and the supernatant of M2 microglia 2 ml was added to the medium during restoration of O 2-glucose supply, and the cells were cultured for 24 h. In group O+ M2+ G, cells were subjected to 4 h of OGD, and the supernatant of M2 microglia 2 ml treated with the exosome inhibitor GW4869 10 μmol/L was added to the medium during restoration of O 2-glucose supply, and the cells were cultured for 24 h. In group O+ M2-E, cells were subjected to 4 h of OGD, and the M2 microglia-derived exosome 10 μg/ml was added to the medium during restoration of O 2-glucose supply, and the cells were cultured for 24 h. The morphological changes of cells were observed with a light microscope, the cell viability was detected by CCK-8 assay, the expression of aquaporin 4 (AQP4) mRNA was detected by quantitative real-time polymerase chain reaction, and the expression of AQP4 and porimin was detected by Western blot. Results:Compared with group C, the cell viability was significantly decreased, the expression of AQP4 protein and mRNA and porimin was up-regulated ( P<0.05), and cell swelling occurred in the other four groups.Compared with group O, the cell viability was significantly increased, and the expression of AQP4 protein and mRNA and porimin was down-regulated in O+ M2 and O+ M2-E groups ( P<0.05), and no significant change was found in the parameters mentioned above ( P>0.05), and the cell viability was significantly attenuated in group O+ M2+ G.Compared with group O+ M2, the cell viability was significantly decreased, and the expression of AQP4 protein and mRNA and porimin was up-regulated in group O+ M2+ G ( P<0.05), and no significant change was found in the parameters mentioned above ( P>0.05), and the degree of cell swelling was increased in group O+ M2-E. Conclusions:M2 microglia can mitigate OGD/R injury to astrocytes through exosomes.