Dose distribution prediction in cervical cancer brachytherapy based on 3D U-net
10.3760/cma.j.cn112271-20220305-00085
- VernacularTitle:基于3D U-net的宫颈癌近距离治疗剂量分布预测
- Author:
Rui LUO
1
;
Mingzhe LIU
;
Aiping WEN
;
Chuanjun YAN
;
Jingyue LUO
;
Pei WANG
;
Jie LI
;
Xianliang WANG
Author Information
1. 成都理工大学核技术与自动化控制学院,成都 614000
- Keywords:
Cervical cancer;
Brachytherapy;
Dose prediction;
Dose distribution;
3D U-net
- From:
Chinese Journal of Radiological Medicine and Protection
2022;42(8):611-617
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To establish a three-dimensional (3D) U-net-based deep learning model, and to predict the 3D dose distribution in CT-guided cervical cancer brachytherapy by using the established model.Methods:The brachytherapy plans of 114 cervical cancer cases with a prescription dose of 6 Gy for each case were studied. These cases were divided into training, validation, and testing groups, including 84, 11, and 19 patients, respectively. A total of 500 epochs of training were performed by using a 3D U-net model. Then, the dosimetric parameters of the testing groups were individually evaluated, including the mean dose deviation (MDD) and mean absolute dose deviation (MADD) at the voxel level, the Dice similarity coefficient (DSC) of the volumes enclosed by isodose surfaces, the conformal index (CI) of the prescription dose, the D90 and average dose Dmean delivered to high-risk clinical target volumes (HR-CTVs), and the D1 cm 3 and D2 cm 3 delivered to bladders, recta, intestines, and colons, respectively. Results:The overall MDD and MADD of the 3D dose matrix from 19 cases of the testing group were (-0.01 ± 0.03) and (0.04 ± 0.01) Gy, respectively. The CI of the prescription dose was 0.70 ± 0.04. The DSC of 50%-150% prescription dose was 0.89-0.94. The mean deviation of D90 and Dmean to HR-CTVs were 2.22% and -4.30%, respectively. The maximum deviations of the D1 cm 3 and D2 cm 3 to bladders, recta, intestines, and colons were 2.46% and 2.58%, respectively. The 3D U-net deep learning model took 2.5 s on average to predict a patient′s dose. Conclusions:In this study, a 3D U-net-based deep learning model for predicting 3D dose distribution in the treatment of cervical cancer was established, thus laying a foundation for the automatic design of cervical cancer brachytherapy.