Mechanism of high mobility group protein B1 in lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome
10.3760/cma.j.cn121430-20220308-00224
- VernacularTitle:高迁移率族蛋白B1在脂多糖诱导的ALI/ARDS中的作用机制研究
- Author:
Jianyu QU
1
;
Jiali FENG
;
Jun LI
;
Xiao HUANG
;
Boyang QI
;
Tiantian QIAN
;
Xiaozhi WANG
Author Information
1. 滨州医学院附属医院重症医学科,山东滨州 256600
- Keywords:
Acute lung injury;
Acute respiratory distress syndrome;
Glycocalyx;
Lipopolysaccharide;
High mobility group protein B1
- From:
Chinese Critical Care Medicine
2022;34(8):825-830
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the role and possible pathogenesis of high mobility group protein B1 (HMGB1) in lipopolysaccharide (LPS)-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS).Methods:① In vivo, 24 SPFC57BL/6 male mice were randomly divided into normal control group, ALI/ARDS model group, ethyl pyruvate (EP) treatment group and EP control group, with 6 mice in each group. The ALI/ARDS model was established by intraperitoneal injection of 20 mg/kg LPS. Mice in normal control group and EP control group were intraperitoneally injected with the same amount of sterile normal saline. Then, mice in the EP treatment group and EP control group were intraperitoneally injected with 40 mg/kg HMGB1 inhibitor EP. After 6 hours, the mice were sacrificed and lung tissues were collected. The expressions of heparan sulfate (HS), syndecans-1 (SDC-1), heparanase (HPA) and matrix metalloproteinases-9 (MMP-9) in lung tissues were detected by immunofluorescence technique. Orbital blood of mice was collected and serum was extracted to detect the content of HMGB1 by enzyme linked immunosorbent assay (ELISA). ② In vitro, human umbilical vein endothelial cells (HUVECs) were randomly divided into 6 groups: normal control group, HUVECs damage group (treated with 1 mg/L LPS for 6 hours), HMGB1 group (treated with 1 μmol/L recombinant HMGB1 for 6 hours), HMGB1+EP group (treated with recombinant HMGB1 for 1 hour and then added 1 μmol/L EP for 6 hours), LPS+EP group (treated with LPS for 1 hour and then added 1 μmol/L EP for 6 hours), EP group (treated with 1 μmol/L EP for 6 hours). The expressions of HS, SDC-1, HPA and MMP-9 in endothelial cells were detected by immunofluorescence technique. Results:① In vivo, light microscopy showed that the alveolar space was thickened after LPS stimulation, and there were a large number of inflammatory cells infiltrating in the alveolar space. Compared with ALI/ARDS model group, the expressions of HS and SDC-1 in lung tissue of EP treatment group were significantly increased [HS (fluorescence intensity): 0.80±0.20 vs. 0.53±0.02, SDC-1 (fluorescence intensity): 0.72±0.02 vs. 0.51±0.01, both P < 0.05], and the expressions of HPA and MMP-9 were significantly decreased [HPA (fluorescence intensity): 2.36±0.05 vs. 3.00±0.04, MMP-9 (fluorescence intensity): 2.55±0.13 vs. 3.26±0.05, both P < 0.05]; there were no significant changes of the above indexes in EP control group. Compared with ALI/ARDS model group, the content of serum HMGB1 in EP treatment group decreased significantly (μg/L: 131.88±16.67 vs. 341.13±22.47, P < 0.05); there was no significant change in the EP control group. ② In vitro, compared with HMGB1 group, the expressions of HS and SDC-1 in HMGB1+EP group were significantly higher [HS (fluorescence intensity): 0.83±0.07 vs. 0.56±0.03, SDC-1 (fluorescence intensity): 0.80±0.01 vs. 0.61±0.01, both P < 0.05], and the expressions of HPA and MMP-9 were significantly lower [HPA (fluorescence intensity): 1.30±0.02 vs. 2.29±0.05, MMP-9 (fluorescence intensity): 1.55±0.04 vs. 2.50±0.06, both P < 0.05]; the expression of HS, SDC-1, HPA and MMP-9 had no significant changes in EP group. Conclusion:HMGB1 participates in LPS-induced injury of endothelial cell glycocalyx, leading to increased lung permeability, and inhibition of HMGB1 can alleviate lung injury.