Effects of Ginkgo biloba on arsenic-induced lung injury in rats based on HMGB1/RAGE pathway
10.3760/cma.j.cn231583-20220124-00020
- VernacularTitle:基于HMGB1/RAGE通路探讨银杏叶片对砷致大鼠肺损伤的改善作用
- Author:
Fanyan ZHENG
1
;
Wenjuan WANG
;
Yuqiong ZHANG
;
Aihua ZHANG
Author Information
1. 贵州医科大学公共卫生与健康学院毒理学系 环境污染与疾病监控教育部重点实验室,贵阳 550025
- Keywords:
Arsenic poisoning;
Ginkgo biloba;
Lung;
Inflammation;
Collagen fiber deposition
- From:
Chinese Journal of Endemiology
2022;41(7):524-531
- CountryChina
- Language:Chinese
-
Abstract:
Objective:To investigate the antagonistic and therapeutic effects of Ginkgo biloba on arsenic-induced lung injury in rats and its mechanism.Methods:A total of 42 healthy clean grade Wistar rats, half male and half female, weighing 120 - 130 g, were randomly divided into 7 groups with 6 rats in each group. Two intervention models of Ginkgo biloba antagonism and treatment were established, respectively. The specific treatments were as follows: (1) Experimental study on the antagonism of Ginkgo biloba (4 groups): the control A group was given deionized water; the Ginkgo biloba control (GBE) group was given Ginkgo biloba solution (50 mg·kg -1·bw); the arsenic-treated (As) group was given sodium arsenite solution (10 mg·kg -1·bw); the Ginkgo biloba antagonistic (As + GBE) group was treated with sodium arsenite solution (10 mg·kg -1·bw) and Ginkgo biloba solution (50 mg·kg -1·bw), and the above administration was by gavage for 6 days/week, for 4 months. (2) Experimental study on the treatment of Ginkgo biloba (3 groups): the control B group was given deionized water for 5.5 months; in the arsenism natural recovery (recovery) group, sodium arsenite solution (10 mg·kg -1·bw) was administered by gavage for 4.0 months and deionized water for 1.5 months; the Ginkgo biloba treatment (treatment) group was given sodium arsenite solution (10 mg·kg -1·bw) by gavage for 4.0 months and Ginkgo biloba solution (50 mg·kg -1·bw) for 1.5 months, and the above administration was for 6 days/week. Masson staining was used to evaluate collagen fiber deposition in lung tissue. Western blotting was used to detect the expression level of related proteins in lung tissue homogenates, including inflammatory cytokines matrix metalloproteinase-9 (MMP-9), interleukin (IL)-1β, IL-18; high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) of the HMGB1/RAGE pathway; phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K), protein kinase B (AKT), phosphorylated AKT (p-AKT) of the PI3K/AKT pathway; transforming growth factor (TGF)-β1, SMAD2, p-SMAD2, SMAD3, p-SMAD3 and SMAD4 of the TGF-β1/SMAD pathway. Results:(1) Antagonistic effect of Ginkgo biloba: compared with the control A group, there was no significant change in protein expression and collagen fiber deposition in the lung tissue of GBE group ( P > 0.05); the levels of MMP-9, IL-1β and IL-18 protein expression and collagen fiber deposition in the lung tissue of As group were significantly increased ( P < 0.05); and the levels of HMGB1, RAGE, PI3K, p-AKT, TGF-β1, p-SMAD2, p-SMAD3 and SMAD4 protein expression were significantly increased ( P < 0.05). Compared with As group, the levels of MMP-9, IL-1β and IL-18 protein expression and collagen fiber deposition were significantly decreased in As + GBE group ( P < 0.05); and levels of HMGB1, RAGE, PI3K, p-AKT, TGF-β1, p-SMAD2, and p-SMAD3 protein expression were significantly decreased ( P < 0.05). (2) Therapeutic effect of Ginkgo biloba: compared with control B group, the levels of MMP-9, IL-1β, IL-18 protein expression and collagen fiber deposition were significantly increased in recovery group ( P < 0.05); and the levels of HMGB1, RAGE, PI3K, p-AKT, TGF-β1, p-SMAD2, p-SMAD3 and SMAD4 protein expression were significantly increased ( P < 0.05). Compared with recovery group, the levels of MMP-9, IL-1β, IL-18, HMGB1, RAGE, PI3K and p-AKT protein expression were significantly decreased in treatment group ( P < 0.05); and there was no significant change in collagen fiber deposition and TGF-β1, p-SMAD2, p-SMAD3 and SMAD4 protein expression levels in lung tissue ( P > 0.05). In both experiments, there was no significant difference in the protein expression levels of AKT, SMAD2 and SMAD3 between the groups ( P > 0.05). Conclusion:Ginkgo biloba intervention has ameliorated inflammatory injury and collagen fiber deposition in lung tissue of arsenic-treated rats possibly by inhibiting the expression levels of HMGB1/RAGE pathway-related proteins.