Influencing factors of Legionella reproduction in secondary water supply operation and management.
10.3760/cma.j.cn112150-20220614-00604
- VernacularTitle:中国某城市二次供水设施中嗜肺军团菌污染现状及影响因素分析
- Author:
Xiao ZHANG
1
;
Sheng Hua GAO
1
;
Jia Yi HAN
1
;
Chen Ming HUANG
1
;
Lan ZHANG
1
Author Information
1. China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
- Publication Type:Journal Article
- MeSH:
Humans;
Legionella;
Water Microbiology;
Water Supply;
Legionella pneumophila;
Reproduction;
Disinfectants
- From:
Chinese Journal of Preventive Medicine
2022;56(11):1612-1617
- CountryChina
- Language:Chinese
-
Abstract:
Objective: To analyze the pollution status and influencing factors of Legionella pneumophila in a secondary water supply facility in a city. Methods: From June to August 2020, a survey on the level of Legionella pneumophila in secondary water supply unit was carried out in a city in northern China, and 304 sets of secondary water supply facilities were included in the study. A total of 760 water samples were collected from the inlet and outlet water of the secondary water supply facilities and some water samples in the water tank were collected for the detection of Legionella pneumophila, standard plate-count bacteria and related physical and chemical indicators. Through questionnaire survey, the basic information of secondary water supply facilities and daily management of water quality were collected. Multivariate logistic regression model was used to analyze the influencing factors of Legionella pneumophila contamination. Results: Among 304 sets of secondary water supply facilities, most of them were located in residential buildings [57.24% (174/304)]. High and low water tank water supply, low water tank variable frequency conversion water supply and non-negative pressure water supply accounted for 26.6% (81/304), 36.8% (112/304) and 36.5% (111/304), respectively. About 25.7% of facilities (78/304) were positive for Legionella pneumophila. Among them, the positive rates of Legionella pneumophila in high and low water tank water supply, low water tank variable frequency conversion water supply and non-negative pressure water supply facilities were 38.3% (31/81), 29.5% (33/112) and 12.6% (14/111), respectively. The results of multivariate logistic regression model analysis showed that the disinfectant residue could reduce the risk of Legionella pneumophila contamination in water samples, and the OR (95%CI) value was 0.083 (0.022-0.317). The increase of the standard plate-count bacteria and conductivity might increase the risk of Legionella pneumophila contamination in water samples. The OR (95%CI) values were 3.160 (1.667-5.99) and 1.004 (1.001-1.006), respectively. Compared with the non-negative pressure water supply, the risk of Legionella pneumophila contamination of secondary water supply facilities was increased by water supply from high and low water tanks and variable frequency conversion water supply from low water tanks, with OR (95%CI) values of 4.296 (2.096-8.803) and 2.894 (1.449-5.782), respectively. Conclusion: The positive rate of Legionella pneumophila in secondary water supply in the study city is high. Disinfectant residue, conductivity and method of water supply are associated with the positive rate of Legionella pneumophila.