Expression of RUNX2/LAPTM5 in the Induction of MC3T3-e1 Mineralization and Its Possible Relationship with Autophagy
10.1007/s13770-022-00477-x
- Author:
Lei XING
1
;
Yanqin LI
;
Wenhao LI
;
Rong LIU
;
Yuanming GENG
;
Weiqun MA
;
Yu QIAO
;
Jianwen LI
;
Yingtao LV
;
Ying FANG
;
Pingping XU
Author Information
1. Department of Dental Implantology, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510150, China
- Publication Type:ORIGINAL ARTICLE
- From:
Tissue Engineering and Regenerative Medicine
2022;19(6):1223-1235
- CountryRepublic of Korea
- Language:English
-
Abstract:
BACKGROUND:The study aims to correlate osteogenesis with autophagy during the mineralization induction of MC3T3-e1 through exploring the expression of runt-related transcription factor 2 (RUNX2)/lysosomal-associated transmembrane protein 5 (LAMPT5).
METHODS:The induction of mineralization in MC3T3-e1 was followed by detecting the expressions of osteogenesisrelated indexes such as RUNX2, alkaline phosphatase (ALP), osteocalcin (OCN), and LAPTM5 using RT-qPCR and Western blot from 0 to 14 days. Transmission electron microscope was utilised in visualizing the alterations of autophagosomes, which was followed by immunofluorescence detecting the subcellular localization of autophagy-related index sequestosome 1 (P62) and microtubule-associated protein 1 light 3 (LC3) protein and scrutinising the expression of P62 mRNA and P62 and LC3 proteins.
RESULTS:Induction of MC3T3-e1 mineralization demonstrated an increased expression of osteogenesis-related indicators such as RUNX2, ALP, OCN, and LAPTM5 (p < 0.05), as evident from the results of RT-qPCR and Western blot. Meanwhile, the expression of autophagosomes increased one day after mineralization induction and then experienced a gradual decline, and enhanced expression of LC3 protein was noted on days 1–2 of mineralization induction but was then followed by a corresponding reduce. In contrast, a continuous increase was reported in the expression of P62 mRNA and protein, respectively (p < 0.05). Up- and down-regulating RUNX2/LAPTM5 expression alone confirmed the aforementioned results.
CONCLUSION:It was therefore proposed that RUNX2 may be responsible for an early increase and then a gradual decrease in LAPTM5-mediated autophagy through the regulation of its high expression. Meanwhile, increased LAPTM5 expression in osteogenic mineralization presumed that RUNX2/LAPTM5 promoted autophagy and osteogenic expression, which may play a bridging role in the regulation of autophagy and osteogenesis.