Effect of bioactive glass pretreatment on the durability of dentin bonding interface.
- Author:
Qiu Ju LI
;
Wei Yu GONG
;
Yan Mei DONG
- Publication Type:Journal Article
- Keywords:
Bioactive glass;
Dentin bonding;
Microleakage;
Microtensile bond strength;
Remineralization
- MeSH:
Dentin;
Dentin-Bonding Agents;
Glass;
Resin Cements;
Tensile Strength
- From:
Journal of Peking University(Health Sciences)
2020;52(5):931-937
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE:To study the effect of bioactive glass (BG) on the dentin bond strength and the microleakage of hybrid layer.
METHODS:In the study, 30 dentin planes were prepared from the third molars with no caries and equally assigned to the control group, BG group, and sodium trimetaphosphate (STMP)-polyacrylic acid (PAA)-BG group (S-P-BG group), randomly. After etched with 35% phosphoric acid, the dentin planes of BG group were pretreated with 0.5 g/L BG, and the dentin planes of S-P-BG group were pretreated with 5% STMP, 5% PAA and 0.5 g/L BG. No additional pretreatment was done to the dentin planes of control group. Then the dentin planes were bonded using 3M Single Bond 2 adhesive to 3M Z350XT composite resin, and cut into 0.9 mm×0.9 mm column samples, which were stored at 37 ℃ artificial saliva (AS). After 24 hours, 1 month, and 3 months, the microtensile bond strength test was performed. The data were analyzed using one-way ANOVA and LSD method. The morphology of the bond fracture interface was observed with scanning electron microscope. Other 27 teeth were collected and the enamel layer and roots cut off, with the pulp chamber exposed. 0.1% rhodamine B was added to the 3M Single Bond 2 adhesive, and then the adhesive was applied to complete the bonding procedures as above. The teeth were stored in 37 ℃ AS for 24 hours, 1 month, 3 months, and then 0.1% sodium fluorescein solution was placed in the chambers and stained for 1 hour. Confocal laser scanning microscopy was used to observe the interface morphology and microleakage of the hybrid layer.
RESULTS:At the end of 24 hours and 1 month, there was no significant difference in the microtensile bond strength among the three groups (P>0.05). After 3 months of soaking, the S-P-BG group [(36.91±7.07) MPa] had significantly higher microtensile bond strength than the control group [(32.73±8.06) MPa] (P=0.026); For the control group and the BG group, the microtensile bond strength significantly decreased at the end of 3 months compared with 24 hours (control group: P=0.017, BG group: P=0.01); The microtensile bond strength of S-P-BG group af the end of 3 months had no significant difference in compared with 24 hours [(37.99±7.98) MPa] (P>0.05). Observation of the fracture surface at the 24 hours showed no obvious mineralization in all the three groups. After 1 and 3 months, mineral formation was observed in BG group and S-P-BG group, and no obvious collagen exposure was observed in S-P-BG group. Confocal laser scanning microscopy revealed no obvious differences in the morphology and quantity of the resin tag in the control group, BG group and S-P-BG group. At the end of 24 hours, leakage was found in all the three groups. The microleakage of the control group increased at the end of 3 months, while the microleakage of the BG and S-P-BG groups decreased.
CONCLUSION:BG pretreatment of dentin bonding interface can induce mineralization at the bonding interface and reduce the microleakage of the hybrid layer; pretreating the dentin bonding interface with STMP, PAA and BG may enhance the maintaining of the dentin bonding durability.