Effects of the injectable glycol-chitosan based hydrogel on the proliferation and differentiation of human dental pulp cells.
- Author:
Chun Ling CAO
1
;
Cong Chong YANG
1
;
Xiao Zhong QU
2
;
Bing HAN
1
;
Xiao Yan WANG
1
Author Information
1. Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
2. College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
- Publication Type:Journal Article
- MeSH:
Alkaline Phosphatase;
Cell Differentiation;
Cell Proliferation;
Cells, Cultured;
Chitosan;
Dental Pulp;
Humans;
Hydrogels;
Odontoblasts
- From:
Journal of Peking University(Health Sciences)
2020;52(1):10-17
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE:To prepare glycol-chitosan (GC)-based single/dual-network hydrogels with different composition ratios (GC31, DN3131 and DN6262) and to investigate the effects of hydrogel scaffolds on biological behavior of human dental pulp cell (hDPC) encapsulated.
METHODS:GC-based single-network hydrogels (GC31) and GC-based dual-network hydrogels (DN3131, DN6262) with different composition ratios were prepared. The injectability was defined as the average time needed to expel a certain volume of hydrogel under a constant force. The degradation of the hydrogel was determined by the weight loss with time. The fracture stress was measured using a universal testing machine. The proliferation of hDPCs in hydrogels was detected using the cell counting kit-8 (CCK-8) method and CalceinAM/PI Live/Dead assay. After 14 days of odontoblastic induction, the expression of alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) was detected by real-time quantitative reverse transcription PCR (real-time RT-PCR) and the mineralized nodules was observed by Von Kossa staining.
RESULTS:The injectability of all three groups of hydrogels was acceptable. The time of injection of GC31 was the shortest, and that of DN6262 was longer than DN3131 (P<0.05). The degradation rate of GC31 hydrogel in vitro was significantly faster than that of the dual-network hydrogel groups (P<0.05). There was no significant difference between DN3131 and DN6262 (P>0.05). The compressive resistance failure point of GC31 group was 1.10 kPa, while it was 7.33 kPa and 43.30 kPa for DN3131 and DN6262. The compressive strength of dual-network hydrogel was significantly enhanced compared with single-network hydrogel. hDPCs were in continuous proliferation in all the three groups, and the GC31 group showed a higher proliferation rate (P<0.05). The expression levels of DSPP, DMP-1 and ALP in the dual-network hydrogel groups (DN3131, DN6262) were significantly higher than that of GC31 after culturing for 14 days (P<0.05), there was no difference in the expression levels of DMP-1 and ALP between DN3131 and DN6262 (P>0.05); Von Kossa staining showed that more mineralization deposition and mass-shaped mineralized nodules formed in DN3131 and DN6262, while only light brown calcium deposition staining was observed in GC31 group, which was scattered in granular forms.
CONCLUSION:GC-based single/dual network hydrogels with different composition ratios met the injectable requirements. GC31 group had a lower mechanical properties, in which hDPCs exhibited a higher proliferation rate. dual-network hydrogels had slower degradation rate and higher mechanical properties, in which hDPCs exhibited better odontoblastic differentiation potential and mineralization potential.