Construction of an adenovirus vector expressing engineered splicing factor for regulating alternative splicing of YAP1 in neonatal rat cardiomyocytes.
10.12122/j.issn.1673-4254.2022.07.07
- Author:
Yang LI
1
;
Qian ZHAO
1
;
Xiao Wei SONG
2
;
Jin Chao SONG
3
Author Information
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China.
2. Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200082, China.
3. Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200082, China.
- Publication Type:Journal Article
- Keywords:
YAP1;
adenovirus;
alternative splicing;
engineered splicing factor
- MeSH:
Adenoviridae/metabolism*;
Alternative Splicing;
Animals;
Animals, Newborn;
Escherichia coli/metabolism*;
Genetic Vectors;
Myocytes, Cardiac/metabolism*;
Plasmids;
RNA Splicing Factors/metabolism*;
Rats;
Transfection
- From:
Journal of Southern Medical University
2022;42(7):1013-1018
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE:To construct an adenovirus vector expressing artificial splicing factor capable of regulating alternative splicing of Yap1 in cardiomyocytes.
METHODS:The splicing factors with different sequences were constructed against Exon6 of YAP1 based on the sequence specificity of Pumilio1. The PCR fragment of the artificially synthesized PUF-SR or wild-type PUFSR was cloned into pAd-Track plasmid, and the recombinant plasmids were transformed into E. coli DH5α for plasmid amplification. The amplified plasmids were digested with Pac I and transfected into 293A cells for packaging to obtain the adenovirus vectors. Cultured neonatal rat cardiomyocytes were transfected with the adenoviral vectors, and alternative splicing of YAP1 was detected using quantitative and semi-quantitative PCR; Western blotting was performed to detect the signal of the fusion protein Flag.
RESULTS:The transfection efficiency of the adenovirus vectors was close to 100% in rat cardiomyocytes, and no fluorescent protein was detected in the cells with plasmid transfection. The results of Western blotting showed that both the negative control and Flag-SR-NLS-PUF targeting the YAPExon6XULIE sequence were capable of detecting the expression of the protein fused to Flag. The results of reverse transcription-PCR and PCR demonstrated that the artificial splicing factor constructed based on the 4th target sequence of YAP1 effectively regulated the splicing of YAP1 Exon6 in the cardiomyocytes (P < 0.05).
CONCLUSION:We successfully constructed adenovirus vectors capable of regulating YAP1 alternative splicing rat cardiomyocytes.