Mechanism of Liu Junzitang in Treatment of Muscle Atrophy in Mice with Lung Cancer Cachexia Through Regulating STAT3/Ubiquitin Proteasome Pathway
10.13422/j.cnki.syfjx.20220430
- VernacularTitle:六君子汤调控STAT3/泛素蛋白酶体途径防治肺癌恶病质小鼠肌肉萎缩的机制
- Author:
Yan ZHANG
1
;
Ya-zhou SANG
1
;
Meng-wei PENG
1
;
Yu-long CHEN
1
;
Yan LIU
1
;
Cai-li ZHANG
1
;
Yao-song WU
1
Author Information
1. Henan Key Laboratory of Traditional Chinese Medicine(TCM) Syndrome and Prescription in Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Publication Type:Journal Article
- Keywords:
lung cancer cachexia;
muscle atrophy;
Liu Junzitang;
signal transducer and activator of transcription 3(STAT3);
ubiquitin proteasome
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2022;28(5):8-15
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo explore the mechanism of Liu Junzitang in preventing and treating muscle atrophy in mice with lung cancer cachexia based on the signal transducer and activator of transcription 3(STAT3)/ubiquitin proteasome pathway in vivo. MethodForty C57BL/6 mice aged six weeks were randomly divided into a blank group, a model group, a Liu Junzitang group, an inhibitor group (stattic group),and a Liu Junzitang + inhibitor group (combination group), with eight mice in each group. The cachectic muscle atrophy model was induced by subcutaneous inoculation of Lewis lung cancer cell line under the right anterior armpit in mice except those in the blank group. On the 8th day after subcutaneous inoculation, the mice in the corresponding groups received Liu Junzitang (9.56 g·kg-1·d-1) by gavage and intraperitoneal injection of stattic [25 mg·kg-1·(2 d)-1]. After three weeks of drug intervention, the body weight and gastrocnemius muscle weight were recorded. Hematoxylin-eosin (HE) staining was used to observe the pathological changes and cross-sectional area of gastrocnemius muscle fibers in mice. Western blot was used to detect the expression of phosphorylated-STAT3 (p-STAT3), STAT3, muscle atrophy F-box (MAFbx), and muscle RING finger protein 1 (MuRF1) in the gastrocnemius muscle. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of STAT3, MAFbx, and MuRF1 in the gastrocnemius muscle. ResultCompared with the blank group, the model group showed lightened body and the gastrocnemius muscle, reduced cross-sectional area of gastrocnemius muscle fibers, and increased protein expression of p-STAT3, STAT3, MAFbx, and MuRF1 and mRNA expression of STAT3, MuRF1, and MAFbx in the gastrocnemius muscle (P<0.05). Compared with the model group, the Liu Junzitang group showed increased body weight, gastrocnemius muscle weight, and cross-sectional area of gastrocnemius muscle fibers (P<0.05), and decreased protein expression of p-STAT3, STAT3, MuRF1, MAFbx, and mRNA expression of STAT3 and MAFbx in gastrocnemius muscle (P<0.05). Compared with the model group, the inhibitor group showed increased body weight and cross-sectional area of gastrocnemius muscle fibers (P<0.05), and reduced protein expression of p-STAT3, STAT3, MuRF1, MAFbx, and mRNA expression of STAT3 and MAFbx in gastrocnemius muscle (P<0.05). Compared with the model group, the combination group showed increased body weight and gastrocnemius muscle weight (P<0.05),and decreased protein expression of p-STAT3, STAT3, MuRF1, and mRNA expression of STAT3 and MAFbx in the gastrocnemius muscle (P<0.05). Compared with the Liu Junzitang group, the stattic group and the combination group showed reduced expression of p-STAT3 protein in the gastrocnemius muscle (P<0.05). ConclusionLiu Junzitang can prevent and treat muscle atrophy in mice with lung cancer cachexia, and its mechanism may be associated with the protein and mRNA expression related to the STAT3-mediated ubiquitin proteasome pathway.